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Preface

Few personal computers—indeed few computers of any kind—
have been as thoughtfully designed or as attractive to people
who enjoy programming as the Commodore 128. It has sev-
eral environments, optimized disk access, 16 memory config-
urations, and dozens of special codes, escape sequences, and
screen controls. It’s a generously equipped toolbox for people
who like to customize their computers and their software. And
it offers the programmer a set of tools which are hitherto un-
matched in variety and power in a consumer computer.

It represents the best of a breed: the eight-bit machine.
These computers are built on chips which work with one byte
at a time—the 8502 chip in the 128 and the 6502 chip upon
which most of the first consumer computers were built. They
are a technology in its twilight, but the 128 has significant
strengths and could well survive for years as a model of what
personal computers can be.

The 68000 chip is emerging—Commodore’s Amiga, Atari’s
ST, and Apple’s Macintosh all use it—and no one can turn
back the clock. This new 68000 is bigger, faster, and much
more flexible than eight-bit chips. It can manipulate four bytes
at a time and directly access massive amounts of memory. It
doesn’t need to switch banks, and it races along at eight times
the speed of the older chips. It’s the end of an age.

Nevertheless, excellence can and often does appear at the
end of an age. Bach, probably the finest musician ever, sum-
marized and synergized the music of his time. He embodied
the best of what was then known. As it turned out, his sum-
maries and synergism have proven timeless and durable.
There has been more dramatic music since, equal music per-
haps, but no better music. The Commodore 128 is a complex,
full, and rich summation of the best that is possible with an
eight-bit machine architecture. It is a classic programmer’s
computer. You can spend years exploring its abilities.

However, the heart of a computer is only accessible via
machine language. Several years ago I decided to learn to pro-
gram in machine language, the computer’s own language. I
understood BASIC fairly well and I realized that it was simply
not possible to accomplish all that I wanted to do with my



computer using BASIC alone. BASIC is sometimes just too slow.

I faced the daunting (and exhilarating) prospect of learn-
ing to go below the surface of my computer, of finding out
how to talk directly to a computer in its language, not the
imitation English of BASIC. As I was to discover, something
amazing lies beneath BASIC.

Few events in learning to use a personal computer have
had more impact on me than the moment that I could in-
stantly fill the TV screen with any picture I wanted because of
a machine language program I had written. I was amazed at
its speed, but more than that, I realized that anytime large
amounts of information were needed onscreen in the future—
it could be done via machine language. I had, in effect, created
a new BASIC “command” which could be added to any of my
programs. This command—using a SYS instruction to send the
computer to my custom-designed machine language routine—
allowed me to have previously impossible control over the
computer.

BASIC might be compared to a reliable, comfortable car.
It will get you where you want to go. Machine language is like
a sleek racing car—you get there with lots of time to spare.
When programming involves large amounts of data, music,
graphics, or games, speed can become the single most im-
portant factor.

After becoming accustomed to machine language, I de-
cided to write an arcade game entirely without benefit of
BASIC. It was to be in machine language from start to finish. I
predicted that it would take about 20 to 30 hours. It was a
space invaders game with mother ships, rows of aliens, sound
... the works. It took closer to 80 hours, but I am probably
more proud of that program than of any other I've written.

After I'd finished it, I realized that the next games would
be easier and could be programmed more quickly. The mod-
ules handling scoring, sound, screen framing, delay, and
player/enemy shapes were all written. I only had to write
new sound effects, change details about the scoring, create
new shapes. The essential routines were, for the most part, al-
ready written for a variety of new arcade-type games. When
creating machine language programs, you build up a collection
of reusable subroutines. For example, once you find out how
to make sounds on your 128, you change the details, but not
the underlying procedures, for any new songs.
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The great majority of books about machine language as-
sume a considerable familiarity with both the details of
microprocessor chips and with programming technique. This
book assumes only a working knowledge of BASIC. It was de-
signed to speak directly to the amateur programmer, the part-
time computerist. It should help you make the transition from
BASIC to machine language with relative ease.

You'll quickly discover that machine language is your key
to the-excellence and power waiting within Commodore’s 128.

vii
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Why Machine Language?

Sooner or later, many programmers find that they want to
learn machine language. BASIC is a fine general-purpose tool,
but it has its limitations. Machine language (often called
assembly language) performs much faster. BASIC is fairly easy
to learn, but most beginners do not realize that machine lan-
guage can also be easy. And, just as learning Italian goes
faster if you already know Spanish, if a programmer already
knows BASIC, much of this knowledge will make learning
machine language easier. There are many similarities.

This book is designed to teach machine language on the
Commodore 128 to those who have a working knowledge of
BASIC. For example, Chapter 9 is a dictionary of BASIC com-
mands. Following each BASIC command is a machine lan-
guage routine which accomplishes the same task. In this way,
if you know what you want to do in BASIC, you can find out
how to do it in machine language.

To make it easier to write programs in machine language
(called ML from here on), most programmers use a special
program called an assembler. This is where the term assembly
language comes from. ML and assembly language programs
are both essentially the same thing. Using an assembler to cre-
ate ML programs is far easier than being forced to look up and
then POKE each byte into RAM memory. That’s the way it
used to be done, when there was too little memory in comput-
ers to hold languages (like BASIC or assemblers) at the same
time as programs created by those languages. The old-style
hand-programming was very laborious.

There is an assembler at the end of this book called
LADS, for Label Assembly Development System. It will let
you type in ML instructions (like INC 2) and will translate
them into the right numbers and POKE them for you wher-
ever in memory you decide you want your ML program to be
located. LADS will help you in a variety of other ways as
well. It was designed to offer you a fast, convenient, and effec-
tive ML programming environment, a way of writing pro-
grams which is both natural and familiar.

ML instructions are like BASIC commands; you build an
ML program by using the ML instruction set. A complete,



descriptive table of all the 8502 ML instructions can be found
in Appendix A. Whenever you see a three-letter abbreviation
(like INC) in this book that you don’t recognize, it's an ML
instruction and you can look it up in Appendix A, where
you’ll find its purposes, modes, and syntax fully described.

It’s a little premature, but if you're curious, INC 2 will in-
crease the number in your computer’s second memory cell
(the second byte of RAM memory) by one. If 15 is the number
currently in cell 2, it will become a 16 after INC 2. Think of it
as “increment address two.” Like BASIC, ML has a series of
commands which you use to communicate with the computer
when you write a program. ML commands are always three-
letter abbreviations, like INC, and LADS will help you write
your ML programs using these commands and numbers that
you generally add to the commands as additional information,
like INC 2.

Throughout the book you’ll be learning how to handle a
variety of ML instructions, and LADS will be of great help.
You might want to familiarize yourself with it. Knowing what
it does (and using it to enter the examples in this book), you
will gradually build your understanding of ML, hexadecimal
numbers, and the extraordinary range of new possibilities
open to the computerist who knows ML. Knowing ML, being
able to talk directly to your machine, changes things so much
that it’s like getting a whole new computer, a much more
powerful computer.

Seeing It Work
Chapters 2-8 each examine a major aspect of ML where it dif-
fers from the way BASIC works. In each chapter, examples
and exercises lead the programmer to a greater understanding
of the methods of ML programming. By the end of the book,
you should be able to write, in ML, most of the programs and
subroutines you will want or need.

Let’s examine some advantages of ML, starting with the
main one—ML runs extremely fast.

Here are two programs which accomplish the same thing.
The first is in ML, and the second is in BASIC. They get re-
sults at very different speeds indeed as you'll see:

Machine Language
169 1 160 0 153 0 4 153 0 5
250 153 0 6 153 0 7 200 208 241 96
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BASIC
5 FOR I = 1 TO 1000: PRINT “A”;: NEXT I

These two programs both print the letter A on the screen
1000 times. The ML version takes up 21 bytes of RAM (Ran-
dom Access Memory). The BASIC version takes up 45 bytes
and takes about 30 times as long to finish the job. If you want
to see how quickly the ML works, you can POKE those num-
bers somewhere into RAM and run the ML program with a
SYS command to the little program. (For this and other ex-
ample programs in this book which directly store characters to
the screen RAM, please switch to 40-column mode when try-
ing the example.)

In both BASIC and ML, many instructions are followed
by an argument. We mentioned the instruction INC 2. In that
example, the number 2 is the argument. In BASIC, the SYS
instruction must be given an argument which tells it where to
SYS, where the ML program it’s going to run is located in
RAM. The SYS instruction will turn control of the computer
over to the address given as its argument. There would be an
ML program waiting there.

Just remember that an argument is the second item in a
pair and that an argument modifies (makes more specific) a
given instruction. In the pairs INC 2, SYS 2816, and Send a
Letter, the 2, 2816, and Letter are the arguments. The INC,
SYS, and Send are the instructions.

To make it easy to see the speed of our 1000 A’s example
ML program, we’ll just load it into memory without yet know-
ing much about it. We'll use a BASIC loader program that sim-
ply POKEs all the numbers of the ML program into memory;
then you SYS 2816 from BASIC to activate the ML program.

This little ML program is just numbers so far (and that’s
all the computer needs anyway). But for us humans it would
be worthwhile being able to see what the program looks like
as instructions. There’s a way. A disassembly is like a BASIC
LIST. You can give the starting address of an ML program to &
disassembler, and it will translate the numbers it finds in the
computer’s memory into a readable series of ML instructions.
The built-in monitor on the 128 contains a disassembler that
you can use to examine and study ML programs. Note that
you have to give a start address whenever you write (with an
assembler), list (with a disassembler), or run (with SYS) an ML



program. That’s because, unlike BASIC programs, ML pro-
grams can be located anywhere in RAM memory.

Here’s what our little example ML program looks like
when it has been translated by a disassembler:

@BO9 A9 01 LDA #$01
OB0O2 AQ 00 LDY #$00
@BO4 99 00 04 STA $0400,Y
@BO7 99 00 @5 STA $0500,Y
OBOA 99 OO0 06 STA $0600,Y
@BOD 99 00 @7 STA $0700,Y

e o o o e o o o
L R . T U R

@B10 C8 INY
9Bl11 DO Fl BNE $@B0O4
9B13 60 RTS

The following BASIC program (called a loader) will POKE
the ML instructions (and their arguments) into memory for you:

10 FOR I = 2816 TO 2835:READ A:POKE I,A:NEXT I
20 PRINT"SYS 2816 TO ACTIVATE"

30 DATA 169,1,160,0,153,0,4,153,8,5

40 DATA 153,0,6,153,0,7,200,208,241,96

After running this program, switch to 40-column mode
and type SYS 2816 as instructed. The screen will instantly fill.

BASIC stands for Beginner’s All-purpose Symbolic
Instruction Code. Because it is all-purpose, it cannot be the
perfect code for any specific job. The fact that ML speaks di-
rectly to the machine, in the machine’s language, makes it far
the more efficient language. This is because however cleverly
a BASIC program is written, it will nevertheless always require
extra running time to finish a job. This same problem slows
down every other computer language as well: Logo, Forth,
Pascal, C, whatever. None of them is the machine’s language
and, thus, none can run at maximum speed.

To see why this is, think of the common PRINT instruc-
tion in BASIC. A PRINT statement drags BASIC into a series
of operations which ML avoids. BASIC must ask and answer a
series of questions. Where is the text located that is to be
printed? Is it a variable? Where is the variable located? What's
its length? Where on the screen is the text to be placed?

ML is far more efficient. As we will discover, ML does not
need to hunt for a string variable. And 40-column screen ad-
dresses do not require a complicated series of searches in an
ML program. Each of these tasks, and others, slows BASIC
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down because it must serve so many general purposes. The
screen fills slowly because BASIC has to make so many more
decisions about every action it attempts than does ML.

Inserting ML for Speed

A second benefit which you derive from learning ML is that
your understanding of computing will be much greater. On
the abstract level, you will be far more aware of just how
computers work. On the practical level, you will be able to
choose between BASIC or ML, whichever is best for the pur-
pose at hand. This choice between two languages permits far
more flexibility and allows a number of tasks to be pro-
grammed which are clumsy or even impossible in BASIC.
Quite a few of your favorite BASIC programs would benefit
from a small ML routine, “inserted’”” into BASIC with a SYS,
to replace a heavily used, but slow, loop or subroutine. Large
sorting tasks, smooth animation, and many arcade games and
other kinds of programs must involve ML. And most programs
can benefit from ML patches. It's no accident that nearly all
commercial computer programs are written in machine language.

BASIC vs. Machine Language

Because of the great efficiency and speed of ML, it’s not
surprising that BASIC itself is written in ML. It's made up of
many ML subprograms stored in your 128’s Read Only Mem-
ory (ROM). BASIC is a collection of special words such as
STOP and RUN, each of which stands for a cluster of ML
instructions. One such cluster sits in ROM (unchanging mem-
ory) just waiting for you to type LIST. If you do type in that
word, the computer turns control over to the ML routine
which accomplishes a program listing. The BASIC programmer
understands and uses these BASIC words to build a program.
You hand instructions over to the computer and then rely on
the convenience of referring to all those prepackaged ML
routines by their BASIC names. The computer always works
with ML instructions. That’s why you cannot honestly say that
you truly understand computing until you understand the
computer’s language: machine language.

Another reason to learn ML is that custom programming
is then possible. Computers come with a disk operating sys-
tem (DOS) and BASIC (or other higher-level languages). After
awhile, you will likely find that you are limited by the rules or

xiii



the commands available in these languages. You will want to
add to them, to customize them. An understanding of ML is
necessary if you want to add new words to BASIC, to modify
a word processor (which was written in ML), to personalize
your computer—to make it behave precisely as you want it to.
This book will give you the knowledge and the tools to fully
understand and to speak directly to your 128.

BASIC’s Strong Points

Of course, BASIC has its advantages and in some cases is to
be preferred over ML. BASIC is usually simpler to debug (to
get all the problems ironed out so that it works as it should).
In Chapter 3 we’ll examine some ML debugging techniques
which work quite well, but BASIC is the easier of the two lan-
guages to correct. For one thing, BASIC often just comes out
and tells you your programming mistakes by printing error
messages on the screen. Nevertheless, if you use the LADS
assembler from this book, it too will print error messages and
identify the offending line number.

Contrary to popular opinion, ML is not always a memory-
saving process. ML can use up about as much memory as
BASIC does when accomplishing the same task. Short pro-
grams can be somewhat more compact in ML, but longer pro-
grams generally use up bytes fast in both languages. However,
worrying about using up computer memory is quickly becom-
ing less and less important.

Soon programmers will probably have more memory
space available than they will ever need. The 128 is particu-
larly RAM rich. In any event, a talent for conserving bytes,
like skill at trapping wild game, will likely become a victim of
technology. It will always be a skill, but it seems as if it will
not be an everyday necessity.

So, which language is best? They are both best—but for
different purposes. Many programmers, after learning ML, find
that they continue to construct some of their programs in BASIC
or some other language, but add ML modules where speed is
important. An all-ML program will, however, generally be
more efficient, more flexible, and far faster than any alter-
native. Remember, it's no accident that the great majority of
professional and commercial programs are written in pure ML.

But perhaps the best reason of all for learning ML is that
it is fascinating and fun.
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How to Use This Book

Throughout this book there are short example programs in
machine language for you to type in and experiment with.
They vary in length, but most are quite brief and are intended
to illustrate an ML concept or technique. The best way to learn
something new is often to just jump in and do it. Machine lan-
guage programming is no different. Machine language pro-
grams are written using a program called an assembler, just as
BASIC programs are written using a program inside the com-
puter called Microsoft BASIC.

This book includes a powerful assembler, LADS, in
Appendix F. In addition to being versatile, LADS offers the
beginner a number of conveniences such as error messages
and a familiar working environment. And the more sophis-
ticated features of the assembler are there for you when you're
ready to use them.

The First Step: Assembling

It is probably a good idea to first type LADS into your com-
puter (typing instructions are in Appendix F). Once you've got
a working version, you're ready to use the assembler with the
practice examples throughout the book. (If you prefer, you can
order a disk which contains LADS and other programs from
this book. See the coupon in the back of this book for details.)

Frequently, the examples in the book are designed to do
something to the screen. The reason for this is that you can
then tell at once if things are working as planned. If you are
trying to send the message TEST STRING to the screen and it
comes out TEST STRI or TEST STRING@, you can go back
and quickly reassemble with LADS until you get it right. More
important, you'll discover what you did wrong.

Many programs manipulate data within a database or
make calculations with some numbers somewhere in RAM,
but the action takes place offscreen. When learning ML, how-
ever, it’s often helpful to put your data manipulations right up
in front of your eyes on the screen so that you can see pre-
cisely how things are going. When everything is working cor-
rectly, you can redirect the data to some less visible place
elsewhere in RAM.
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However, the 80-column screen cannot be directly
POKEd. So, while LADS works with 40 or 80 columns, you
may want to test some of the examples using the 40-column
mode. Any examples which access $0400 or 1024 (for ex-
ample, STA $0400) will be visible only on the 40-column
screen. You can assemble the source code in 80-column mode,
but when you run the object code, it will not be visible except
in the 40-column mode. Other examples use JSR $FFD2 or JSR
PRINT, and these examples will run as is on either screen.

A Sample Program

The following little ML program will show you how to go
about entering and testing the practice examples in this book.
At this point, of course, you won't yet recognize the ML
instructions involved. This sample program is intended only to
serve as a guide to working with the examples you will come
upon later in the text.

After you've typed in and made a few backup copies of
LADS, you can use it to create runnable ML programs. De-
tailed instructions on using all of the LADS features are found
in Appendix B, but for now, we just want to know how to en-
ter a short, easy program.

The LADS environment is very like BASIC. In fact, you
write your programs as if you were writing a BASIC program,
except you use ML commands rather than BASIC commands.
You use line numbers and, if you wish, colons to separate
statements. The first line, however, must tell LADS where you
want your ML program located in memory (since ML can be
placed anywhere in RAM). A safe place to locate your shorter
ML programs is address 2816 (we’ll learn why later), so:

10 *= 2816
20 .S

30.0

31 LDA #0:STA $FFD0; SWITCH TO BANK 15
40 LDA #65

50 JSR $FFD2

60 RTS

Try this. Turn on your computer. If you have a 1571 disk
drive with a bootable LADS disk inside, LADS will have al-
ready been loaded into your 128 when you turned it on.

If you've also typed in the LADS loader (see Appendix F),
it will load LADS in and also set up a small template so you
won’t have to type *= or .S or .O each time you start a pro-
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Chapter 1

gram. If you prefer not to have this template, delete the POKE
loop in line 50 of the loader.
You might also want to type

AUTO10

so that the 128 makes automatic line numbers as you type.
Entering an ML program for LADS is indistinguishable from
entering a BASIC program as far as the 128 is concerned.

So, type in the program above, in BASIC mode, just as if
it were a BASIC program. If you didn’t have LADS autoload
itself, type BLOAD”LADS". Be sure to use BLOAD so LADS
will load in where it’s supposed to be in RAM, not at the start
of BASIC memory. Then type SYS 10000 which will activate
LADS, and you'll see your program changed into an ML pro-
gram. This transformation is called an assembly. You've just
assembled this little program.

By the way, the LADS loader program sets up the F1 key
to SYS 10000, so you could just hit F1 instead of typing SYS
10000 if you've booted the LADS disk. You can hit F1 from
anywhere on the screen; you need not be on a blank line. It
will clear the screen as does LADS when it begins assembling.

LADS will print out the results on the screen while it
works (the .S in line 20 tells LADS to provide a screen listing
to show you what’s happening during assembly), and it will
store the resulting finished machine language program in
RAM memory starting at address 2816. The .O in line 30 tells
LADS to store the program into RAM memory.

If you made any typing errors and LADS couldn’t as-
semble this program, LADS will ring the bell and print the
line number where the error is located. It will also give you an
error message. (To fix such things, just LIST and change the
offending line as you would to modify a BASIC program.) You
might want to see what happens if you change line 40 to a
misspelling:

40 LDR #65
Or if you forget to give the number:
40 LDR

In any case, once you've loaded LADS into memory, you
won’t need to load it again if you want to assemble other pro-
grams later. This program is supposed to print the letter A on
your screen. To test the program, simply type SYS 2816. The
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.O caused the results of the assembly to be stored in RAM
where you can test them.

The little ML program will do its job, you'll see the letter
A appear, and then the computer will return control back to
the normal BASIC environment. If you want to try making an
adjustment, change the number 65 in line 40 to some other
number to print a different character. Type LIST, and you’ll
see that your original program is still there in memory (2816 is
outside the ordinary BASIC programming locations, so neither
our little ML program nor LADS disturbed our code written in
the BASIC environment). Just change it the way you would
change a BASIC program by writing over the 1 and pressing
RETURN. Then, hit the F1 key or type SYS 10000 to re-
assemble the new version and test it again with SYS 2816.

This is the general method you’ll want to use for creating
ML programs. There is another, more elaborate way to handle
very large ML programs, to automatically save the results to
disk, and a number of other LADS features we’ll come to
later. For now, you know pretty much everything you need to
know to use LADS with the brief examples in this book. (If
you want to experiment with all LADS'’s features right away,
see Appendix B, “How to Use LADS.”)

The main thing to learn here is how to type in programs
and assemble them using LADS. Primarily, you should
remember three things:

1. LADS always has to know where you want to store your
ML program, so the first line of any program you give
LADS must have *= 2816 and nothing else on that line.
We're going to give various start addresses for the example
programs in this book because this will help you learn
where to put ML and learn more about memory usage. But,
if an example doesn’t have *= 2816 as the first line, you
can safely put it in. Many examples are given in the form
they would look if you disassembled them from the mon-
itor, as we'll discover in Chapter 3. However, you're always
safe putting your test routines at 2816.

If you should forget to include a starting address,
LADS will alert you to the fact by printing an error message
onscreen and halting. Some of the examples give *= $B00
as the starting address, but that’s just another way of writ-
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ing 2816. They mean the same thing, but $B00 is hex and
we’ll learn about hex in the next chapter.

. You don’t need to tell LADS where your ML program ends.
Like BASIC, LADS can tell when it’s come upon the last
line number in a program. You can just type in a program
without indicating where it ends, just as you do when writ-
ing a BASIC program. LADS will see the end and calculate
the proper addresses in RAM to store your entire program.

. You should be in BASIC mode—you should see READY.—
when you start to type in programs that you want LADS to
assemble. The environment will be quite familiar if you've
done any BASIC programming (with a few exceptions such
as using ; instead of REM as illustrated in line 31 of the ex-
ample above). Generally, though, everything’s the same as
BASIC. You can use AUTO 10 to set up automatic line
numbering, replace lines by typing their number, insert
lines, and everything else you would do when working with
a normal BASIC program. Of course what you write are ML
commands. These commands are not the same commands
as BASIC's, but that’s the subject of rest of this book.
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The Fundamentals

The difficulty of learning ML has sometimes been exaggerated.
There are some new rules to learn and some new habits to ac-
quire. But most ML programmers would probably agree that
ML is not inherently more difficult to understand than BASIC.
More of a challenge to debug in some cases, but it's not
worlds beyond BASIC in complexity. In fact, in the 1970s,
many of the first home computerists learned ML before they
learned BASIC. This is because an average version of the
BASIC language used in microcomputers takes up around
12,000 bytes of memory, and the early personal computers
(KIM, AIM, etc.) were severely restricted—they had only a
small amount of available memory. These early machines
were unable to offer BASIC; it took up more space than they
had, so everyone programmed in ML.

Interestingly, some of these pioneers reportedly found
BASIC to be just as difficult to grasp as ML. In both cases, the
problem seems to be that the rules of a new language simply
are “obscure” until you know them. In general, though, learn-
ing either language probably requires roughly the same
amount of effort. ,

The first thing to learn about ML is that it reflects the
construction of computers. ML programmers often use a num-
ber system (hexadecimal, or hex for short) which is not based
on ten.

We count by tens because it is a familiar (though ar-
bitrary) grouping for us. Humans have ten fingers. If we had
eleven fingers, the odds are that we would be counting by
elevens.

What’s a Natural Number?

Computers count in groups of twos. It is a fact of electronics
that the easiest way to store and manipulate information is by
on/off states. A light bulb is either on or off. This is a two-
group; it’s binary, and so the powers of two become the natu-
ral groupings for electronic counters: 2, 4, 8, 16, 32, 64, 128,
256. Finger counters (us) have been using tens so long that we
have come to think of ten as natural, like thunder in April.

11



Chapter 2

Tens isn’t natural at all. What’s more, twos is a more efficient
way to count.

To see how the powers of two relate to computers, we
can run a short BASIC program which will give us some of
these powers. Powers of a number is the number multiplied by
itself.

Two to the power of two (2°2) means 2 times 2 (in other
words, 4). Two to the power of three (2°3) means 2 times 2
times 2 (8).

10 FOR I = 0 TO 16
20 PRINT 2 "1
30 NEXT I

ML programming can be done entirely in the familiar
decimal number system. For beginners, that’s probably a wise
thing to do. The LADS assembler in this book allows you to
use either decimal or hex, as you wish. However, you'll prob-
ably see hex used in magazine articles and books, and hex
does format on the screen or paper more neatly than decimal
numbers. Another advantage of hex is that it relates visually
to the binary numbers that the computer is using. The argu-
ments for some advanced ML commands like ROL and EOR
are more easily visualized with hex than with decimal.

Why not just always program in the familiar decimal
numbers (as we do in BASIC)? Because hex is based on groups
of 16 digits, not decimal’s groups of 10. And 16 is one of the
powers of two. Thus, 16 is a convenient grouping (or base) for
ML because it organizes numbers the way the computer looks
at numbers. For example, at the most elementary level all
computers work with bits. A bit is the smallest piece of infor-
mation possible: Something is either on or off, yes or no, plus
or minus, true or false. This two-state condition (binary) can
be remembered by a computer’s smallest single memory cell.
This single cell is called a bit. The computer can turn each bit
on or off as if it were a light bulb, or a flag raised or lowered.

It's interesting that the word bit is frequently explained as
a shortening of the phrase Blnary digiT. In fact, the word bit
goes back several centuries. There was a coin which was soft
enough to be cut with a knife into eight pieces. Hence, pieces
of eight. A single piece of this coin was called a bit and, as
with computer memories, it meant that you couldn’t slice it
any further. We still use the word bit today as in the phrase
two bits, meaning 25 cents.
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Chapter 2

Whatever it’s called, the bit is a small, essential aspect of
computing. Imagine that we wanted to remember the result of
a subtraction. When two numbers are subtracted, they are ac-
tually being compared with each other. The result of the
subtraction tells us which number is the larger or if they are
equal. ML has an instruction, like a command in BASIC,
which compares two numbers by subtraction. It is called CMP
(for compare). This instruction sets flags in the CPU (Central
Processing Unit) of the computer, and one of the flags always
shows whether or not the result of the most recent action
taken by the computer was a zero. We’ll go into this again
later. What we need to realize now is simply that each flag—
like the flag on a mailbox—has two possible conditions: up or
down. In other words, this information (that there’s a zero re-
sult or a nonzero result) is binary and can be stored within a
single bit. Each of the seven flags within the 8502 chip is a bit.
Together, the flags are all held within a single byte. That byte
is called the status register.

Byte Assignments

Our computers group bits into units of eight, called bytes. This
relationship between bits and bytes is easy to remember if you
think of a bit as one of the “pieces of eight.” Eight is a power
of two also (two to the third power). Eight is a convenient
number of bits to work with as a group since we can count
from 0 to 255 using only eight bits. We’ll see how this is done
in a minute.

A byte—able to “hold” 256 different numbers—gives us
enough room to assign all 26 letters of the alphabet (and the
uppercase letters, punctuation marks, and so on) so that each
character we might want to print will have its own particular
number. The letter A (uppercase) has been assigned the num-
ber 65 (in the standard ASCII code that computers use to
communicate). The letter B is 66, and so on. Most micro-
computers, however, do not adhere strictly to the ASCII code,
except when they are communicating with other computers,
for example, through telephone links. The 128 uses the code
in Appendix G for its internal operations. It’s pretty close to
standard ASCII.

The ASCII code, an assignment of numbers to letters and
symbols, forms a convention by which computers worldwide
can communicate with each other. Text can be sent via

13
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modems and telephone lines, and it will arrive meaning the
same thing to an alien computer. It's important to visualize
each byte, then, as being eight bits ganged together and that a
byte is able to represent 256 different things. As you might
have suspected, 256 is another power of two (two to the
power of eight).

So these groupings of eight, these bytes, are a major as-
pect of computing; but we also want to simplify our counting
from 0 to 255. We want the numbers to line up in a column
on screen or on paper. Obviously, decimal numbers are erratic:
The number 5 takes up one space, the number 230 takes up
three spaces. Hex numbers between 0 and 255 will always,
predictably, take up two spaces (here’s 0-255 expressed in the
hexadecimal format: $00-$FF).

In addition to being easier to format in printouts, hex is
also somewhat easier to visualize in terms of the binary num-
ber system—the on/off, single-bit way that the computer
manipulates numbers:

Decimal Hex Binary
1 01 00000001
2 02 00000010
3 03 00000011 (1+2)
4 04 00000100
5 05 00000101 (4+1)
6 06 00000110 (4-+2)
7 07 00000111 (4+2+1)
8 08 00001000
9 09 00001001 (8+1)
10 (Note new digits) 0A 00001010 (8+2)
11 0B 00001011 (8+2+1)
12 0C 00001100 (8+4)
13 0D 00001101 (8+4+1)
14 OE 00001110 (8+4+2)
15 OF 00001111 (8+4+2+1)
16 (Note new column ———10 00010000
17  in the hex) 11 00010001 (16+1)

See how hex $10 (hex numbers are usually preceded by a
dollar sign to show that they are not decimal) looks like bi-
nary? If you split a hex number into two parts, 1 and 0, and
the equivalent binary number into two parts, 0001 and 0000,
you can see the relationship.
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Chapter 2

The Rationale for Hex Numbers
Many ML programmers like to use hexadecimal numbers be-
cause they are a superior visual symbol of the manipulations
inside the computer; hex is simply more like binary because
hex is a power of two and decimal (base ten) is not a power of
two. It’s really up to you whether or when you add hex to
your bag of tricks. (In the early days of programming, another
base—base eight—called octal was very popular. It’s still used
today when programming some large computers.) You will see
that you can choose to use hex or decimal when writing ML
with the LADS assembler in this book. And you can use them
interchangeably, even on the same line of program code. You
can write LDA $0A or LDA 10, whichever you prefer.

Here’s what it looks like when you count up from zero in
both systems:
Decimal
0123456789

And now you start over by moving to a new column with the
number 10.

Hex
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D OE OF

And then you start over with $10, $11, and so on.

See how we ran out of digits when trying to count up to
16 in hex? Hex substitutes the first few letters of the alphabet
to count past 09.

The first thing to notice is that instead of the familiar deci-
mal symbol 10, hex uses the letter A because this is where we
run out of symbols and must start over again with a 1 and a 0.
Zero always reappears at the start of each new grouping in any
number system: 0, 10, 20, and so on. The same thing happens
with the groupings in hex: 0, 10, 20, 30, ... The difference is
that, in hex, the 1 in the “10’s” column is actually what we
would call a 16 (in our normal decimal way of counting).

The second column is now a 16’s column; 11 (hex) means 17
(decimal), and 21 means 33 (2 times 16 plus 1). Learning hex
is probably the single biggest hurdle to overcome when get-
ting to know ML.

Don'’t be discouraged if it’s not 1mmed1ately clear what's
going on. (It probably never will be totally clear—hex is, after
all, unnatural.) And remember that hex is an option, not a
requirement, when programming in ML.
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It’s just that much ML printed in magazines and books
uses hex. That’s why you at least need to be able to recognize
what it means. Nobody really knows it that well. Most ML
programmers use one of the calculators sold by Sharp, TI, or
Hewlett-Packard that perform hex/decimal conversions. Also,
you can give a decimal number to the 128 in monitor mode
and it will print the hex, octal, and binary versions of the same
number. Just precede the number with a plus sign (+). For ex-
ample, to see versions of 100, type +100 and press RETURN.
You can translate a hex number into decimal by preceding it
with a dollar sign ($) and pressing RETURN. If you happen to
be in BASIC mode, writing some LADS source code, you can
use ?HEX$(15) to get the hex of 15 or ?DEC(“0F”) to get the
decimal of $0F. Ultimately, though, hex is one of those things,
like telephone books and dictionaries, that you have to know
how to use, but you don’t have to memorize.

It's possible that someday hex will go the way of octal,
and we’ll stick to the easy, obvious decimal mode entirely (ex-
cept for excursions into binary numbers from time to time). If
you want more understanding, you might want to practice the
exercises at the end of this chapter. As you work with hex, it
will gradually seem less and less alien.

To figure out a hex number, multiply the second column
by 16, and add the other number to it. So, $2A would be 2
times 16 plus 10 (recall that A stands for 10).

Hex does seem impossibly confusing when you come
upon it for the first time. It will never become second nature,
but it should be at least generally understood. You need not
memorize hex beyond learning to count from 1 to 16; this
teaches you the symbols. Be able to count from 00 up to OF.
(By convention, even the smallest hex number is listed as two
digits as in 03 or 0B. The other distinguishing characteristic is
the dollar sign that is usually placed in front of the digits: $05
or $0E.)

It’s enough to know what hex numbers look like and be
able to find them when you need them.

The First 255

Another thing that makes all this easier is that if you do need
to work with hex, most ML programming involves working
with hex numbers only between 0 and 255. This is because a
single byte (eight bits) can hold no number larger than 255.
Manipulating numbers larger than 255 is of no real importance
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Chapter 2

in ML programming until you are ready to work with more
advanced ML programs. This comes later in the book. For ex-
ample, all 8502 ML instructions are coded into one byte, all
the flags are held in one byte, and many addressing modes
use one byte.

To learn all we need to know about hex for now, we can
try some problems and look at some ML code to see how hex
is used in the majority of ML work. But first, let’s take an
imaginary flight over computer memory. Let’s get a visual
sense of what bits and bytes and the inner workings of the
computer’s RAM look like.

The City of Bytes

Imagine a city with a single long row of houses. It’s night.
Each house has a peculiar Christmas display: On the roof is a
row of eight lights. The houses represent bytes; each light is a
single bit (Figure 2-1).

If we fly over the City of Bytes, at first we see only dark-
ness. Each byte contains nothing (zero), so all eight of its
bulbs are off. (On the horizon we can see a glow, however,
because the computer has memory up there, called ROM
memory, which is very active and contains built-in programs.)
But we are down in RAM, our free user-memory, and there
are no programs in RAM yet, so every house is dark. Let’s ob-
serve what happens to an individual byte when different num-
bers are stored there; we can randomly choose byte 1504. We
hover over that house to see what information is ““contained”
in the light display:

Like everywhere else in the City of Bytes, this byte is
dark. Each bulb is off. Observing this, we know that the byte
here is ““holding,” or representing, a zero. If someone at the
computer types in POKE 1504,1, suddenly the rightmost light
bulb goes on and the byte holds a one instead of a zero:

2
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Chapter 2

This rightmost bulb is the one’s column (so far, this is ex-
actly the way things would work in our usual way of counting
by tens, our familiar decimal system). But the next bulb is in
the two’s column, so POKE 1504, 2 would be:

A - [~ - -

LT B Y~ P T A W~

In this way—Dby checking which bits are turned on and
then adding them together—the computer can look at a byte
and know what number is there. Each light bulb, each bit, is
in its own special position in the row of eight and has a value
twice the value of the one just before it:

Eight bits together make a byte. A byte can hold a num-
ber from 0 through 255 decimal. We can think of bytes,
though, in any number system we wish—in hex, decimal, or
binary. Because the computer uses binary, it's useful to be able
to visualize it. Hex has its uses in ML programming. And deci-
mal is familiar. But a number is still a number, no matter what
we call it. After all, five pennies are always five pennies,
whether we symbolize them by 5 (decimal) or $05 (hex) or
00000101 (binary) or just call them a nickel.

A Binary Quiz

BASIC doesn’t understand numbers expressed in hex or bi-
nary. Binary, for humans, is very visual. It forms patterns out
of zeros and ones and lets you see an x-ray of the interior of a
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byte. The following program will let you quiz yourself on
these patterns.

Here is a game which will show you a byte as it looks in
binary. You then try to give the number in decimal:

Program 2-1. Binary Quiz

18 REM BINARY QUIZ

20 Cl = 49:C8 = 48

30 X = INT(256 * RND (1)):D = X:P = 128

4% PRINT"{CLR}"

50 FOR I =1 TO 8

60 IF INT(D / P) = 1 THEN PRINT CHRS$S(Cl);:D = D -
{SPACE}P:GOTO 80

78 PRINT CHRS(C@);

80 P = P / 2:NEXT I:PRINT

99 PRINT"WHAT IS THIS IN DECIMAL?":PRINT

199 INPUT Q:IF Q = X THEN PRINT"CORRECT":GOTO 120

119 PRINT"SORRY, IT WAS"X

120 FOR T = 1 TO 100@:NEXT T

130 GOTO 30

This next program will print out an entire table of binary
numbers from 0 through 255.

Program 2-2. Binary Table

199 REM COMPLETE BINARY TABLE
120 FOR X = @ TO 255:PRINTX;
130 2 = X:L = 7

149 FOR Q = @ TO 7:T = INT (X / 2)
150 KS$(L) = CHR$(48 + (X - T * 2))
16 L = L - 1:X = T:NEXT Q

170 X = Z

180 PRINT TAB(10):;

199 FOR I = @ TO 7:PRINT K$(I);:NEXT I
20@ PRINT

210 NEXT X

Examples and Practice
Here are several ordinary decimal numbers. Try to work out
the hex equivalent:

1. 10— 5. 17 8. 129

2. 15 6. 32 9. 255
K R J— 7. 128 10. 254
4, 16
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Chapter 2

We are not making an issue of learning hex or binary. If
you used your monitor to get the answers, fine. As you work
with ML, you will familiarize yourself with some of the com-
mon hex numbers. And remember, you can program in ML
without needing to worry about hex numbers. For now, we
only want to be able to recognize what hex is. The LADS
assembler or the 128’s built-in monitor will do the translations
for you any time you need them.

One other reason that we’re not stressing hex too much is
that ML is generally not programmed without the help of an
assembler. LADS will handle your input automatically. It al-
lows you to choose whether you prefer to program in hex or
decimal. With LADS, just use the $ symbol when you intend a
number to be interpreted as hex. Otherwise, LADS will as-
sume you mean decimal.

This short BASIC program is good for practicing hex and
also shows you how a two-byte hex number relates to a one-
byte hex number. It will take decimal in and give back the
correct hex.

Program 2-3. Hex Practice

19 PRINT"{CLR}"

2@ INPUT"ENTER A DECIMAL NUMBER";X

3@ IF X> 255 THEN 20:REM NO NUMBERS BIGGER THAN 25
5 ALLOWED

40 PRINT "$";RIGHTS (HEX$(X),2)

50 PRINT:GOTO 28

For larger hex numbers (up to two bytes, $FFFF equals
65535), we can just make a simple change to Program 2-3.
Change line 30 to IF X > 65535 THEN 20, and change line 40
to PRINT “$”;HEX$(X). This will give us four-place hex num-
bers. These larger hex numbers are used in ML mainly for ad-
dresses, since the 8502 can directly address 65536 bytes (bytes
with addresses from 0 through 65535). This is the reason that
many microcomputers max out at 64K. There are special ways
to get around this, but an eight-bit microprocessor like the
8502 is generally limited in the total amount of RAM memory
it can access directly.

The number 65535 is interesting because it represents the
limit of our computers’ memories. The 128 has additional
ROM and RAM in banks which we'll discuss later. The 128
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can directly address only 64K at any one time, but it can
quickly switch banks in and out so that it appears to address
more than 65535 bytes at once. But 64K is the upper limit of
direct addressing without bank switching because the 8502
chip is designed to be able to address (put bytes in or take
them out of memory cells) only up to $FFFF (65535).

Ganging Two Bytes Together to Form an Address

The 8502 often addresses by attaching two bytes together and
looking at them as if they formed a unit. It’s like the way that
putting eight bits together forms the unit we call a byte. The
largest number that two bytes can represent is $FFFF (65535),
and the most that one byte can represent is $FF (255). Three-
byte addressing is not possible for the 8502 chip. Machine lan-
guage means programming instructions which are understood
directly by the 8502 chip itself. There are other CPU (Central
Processing Unit) chips, but the 8502 is the 128’s CPU that’s
covered in this book.

Reading a Machine Language Program

Before getting into an in-depth look at the monitor, that bridge
between you and your machine’s language—we should first
learn how to read ML program listings. You've probably seen
them often enough in magazines.

These commented, labeled, but very strange-looking pro-
grams are called source code (see Program 2-7 for an example).
Source code is what you write when you want to create an
ML program. It can be translated by an assembler program (like
LADS) into an ML program. When you have an assembler
program attack your source code, it looks at the keywords (the
instructions and their arguments, and their addresses) and
then POKEs a series of numbers into the computer. This series
of numbers is called the object code and is the runnable ML
program. You can CALL object code and it will do whatever
you've designed it to do.

Source code usually contains a great deal of information
in the form of comments which are of interest to the pro-
grammer, but which the computer ignores. It's rather like the
way a BASIC program has REMarks to which the computer
pays no attention.

The computer needs only a list of numbers which it can
execute in order. That’s what an ML program is. But for most
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people, lists of numbers are only slightly more understandable
than Morse code. The solution is to let us use words which are
then translated into numbers for the computer. The primary
job of an assembler is to recognize an ML instruction. These
instructions are called mnemonics, which means “‘memory
aids.” They are like BASIC words except that they are always
three letters long and are somewhat less like standard English.

If you type the mnemonic instruction JMP, the assembler
POKEs a 76 into RAM memory. It’s easier for us to remember
something like JMP than the number 76. Seeing a 76, how-
ever, the computer immediately knows that it’s supposed to
perform a JMP. The number 76 is an operation code, or opcode,
to the computer.

We write the mnemonic instruction JMP, an assembler
translates this into the number 76, and the computer rec-
ognizes 76 as the command JUMP. These three-letter words
we use in ML programming were designed to sound like what
they do. JMP does a JUMP (like a GOTO in BASIC). Deluxe
assemblers like LADS also let you use labels instead of num-
bers. These labels can refer to individual memory locations,
special values like the score in a game, or entire subroutines.
(See the instructions for LADS in Appendix B for more infor-
mation about using labels.)

Four Ways to List a Program

Labeled, commented source code listings are the most elabo-
rate kind of ML program representation. There are also three
other kinds of ML listings you might come across. Let’s see
how these four styles of representing an ML program would
look by using a simple example program that just adds 2 + 5
and stores the result in RAM memory location 848. The first
two styles are simply ways for you to type a program into the
computer. The last two styles show you what to type in, but
also illustrate what is going on in the ML program. First, let’s
look at the most elementary kind of ML found in books and
magazines: the BASIC loader.

Program 2-4. BASIC Loader

10 FOR ADDRESS = 2816 TO 2824

20 READ BYTE

30 POKE ADDRESS, BYTE

40 NEXT ADDRESS

50 DATA 24,169,2,195,5,141,808,3,96
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This is a series of decimal numbers in DATA statements
which are POKEd into memory beginning at decimal address
2816 (or, expressed as hex, $B00). This is a BASIC program.
When you run this program, these numbers are stashed into
RAM, and they form a little ML routine which clears the carry
(so there won't be any holdover from previous addition—you
always clear the carry before any addition in ML), then puts
the number 2 into the accumulator—a special location in the
computer that we’ll get to later—and then adds 5. The result
of the addition is then copied from the accumulator into deci-
mal address 848. If you try this program out, you can SYS
2816 to execute the ML program and then PRINT PEEK (848)
and you'll see the answer: 7. BASIC loaders are convenient for
magazines to publish because the user doesn’t need to know
anything at all about ML to enter and use the ML programs.
The BASIC loader POKEs the ML program into memory, and
then the only thing the user has to do is SYS to the right ad-
dress and the ML transfers control back to BASIC when its job
is done. Many ML programs end with an RTS (ReTurn from
Subroutine) instruction which causes the computer to revert to
BASIC mode after the ML program has finished.

Getting even closer to the machine level is the second
way you might see ML printed in books or magazines: the hex
dump. The 128 has a special monitor program in ROM which
lets you list memory addresses and their contents as hex
numbers.

More than that, with the monitor you can type in new
numbers and change the program. That’s what a hex dump
listing is for. You copy its numbers into your computer’'s RAM
by using your computer’s monitor. (The monitor is so im-
portant to ML programming that we’ll spend all of Chapter 3
exploring what it can do for us.)

A hex dump, like a BASIC loader, tells you nothing about
the functions or strategies employed within an ML program.

Program 2-5 is the hex dump version of the same 2 + 5
addition program.

The third type of listing is called a disassembly. It’s the op-
posite of an assembly: A program called a disassembler takes
machine language (the series of numbers, the opcodes in the
computer’s memory) and translates it into the words, the
mnemonics, which humans can read and understand. The in-
struction (the mnemonic) you use when you want to put some-
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thing into the accumulator is called LDA, and you store what's
in the accumulator by using an STA. We'll get to them later.

In this version of our addition routine, Program 2-6, it’s a
bit clearer what’s going on and how the program works. No-
tice that on the far left we have the memory addresses (in
hex), then hex numbers representing the actual bytes of the
program and, on the right, the translation into ML instruc-
tions. ADC means ADd with Carry and RTS means ReTurn
from Subroutine. A disassembly is to ML what LIST is to
BASIC. Your monitor has a disassembler built-in which will
produce these listings.

The Deluxe Version

Finally, we come to that full, luxurious, commented, labeled,
deluxe source code we spoke of earlier. Program 2-7 includes
the hex dump and the disassembly, but it also has labels and
comments and line numbers added to further clarify the pur-
poses of things and to make it easier for programmers to enter
and edit their programs. This kind of listing can be produced
with the LADS assembler by invoking the .S or .P features to
create a full listing on screen or printer during the assembly
process.

Note that in Program 2-7 all the numbers (except the line
numbers on the far left) are in hex. LADS makes this optional.
To make them decimal, use the .NH option and your listing
will be entirely in decimal.

On the far left are the line numbers for the convenience
of the programmer when writing the source code (the program
you write to feed into the assembler). The line numbers can be
used the way BASIC line numbers are used: deleted, inserted,
and so on. Next are the memory addresses where each in-
dividual instruction in this routine is located in RAM. Then
come the hex numbers of the instructions. (So far, it resembles
the traditional hex dump.) Next are the disassembled transla-
tions of the hex, but note that you can replace numbers with
labels as we'll see in Program 2-8. Last are the comments.
They are the same as REM statements in BASIC.

Program 2-8 is functionally the same as 2-7, but we've
defined some labels and used them instead of numbers. That
can be a good way to remember the purpose of various things,
just the way variable names in BASIC assist the programmer.
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Where Programs 2-7 and 2-8 show you what LADS prints
out during an assembly if you request a listing, Program 2-9
illustrates just the source code part, what you would type into
your 128 prior to assembly. Source code is the program you
write; it’s what’s fed to the assembler to produce object code
(the runnable ML program.) The object code has not yet been
generated from this source code. The code has not been assem-
bled yet. You can save or load source code in the same way
that you can save or load programs via BASIC. Once Program
2-9 is typed in, you could SYS 10000 (if you'd previously
loaded LADS into memory), and LADS would translate the
instructions and print them on the screen and/or POKE them
into memory if so instructed.

Those few differences between Programs 2-8 and 2-9 are
conveniences for the programmer. The *= symbol tells the
assembler where you want the ML program located in mem-
ory. The .P turns on the printer, and .S turns on listing to
screen during assembly. The semicolons announce that a re-
mark follows and the assembler should ignore the rest of the
line, just like REM in BASIC.

A simple assembler, like the one found in the 128’s mon-
itor, operates differently. It translates, prints, and POKEs as
soon as you hit RETURN on each line of code. You can save
and load the object, but not source code, with this simple
assembler.

Before we get into the heart of ML programming, a study
of the opcodes and ways of moving information around
(called addressing), we should look at that major ML program-
ming aid: the monitor. It deserves its own chapter.

Answers to quiz

1. 0A 6. 20
2. 0F 7. 80
3.05 8. 81
4.10 9. FF
5.11 10. FE
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The Monitor

A monitor is a program which allows you to work directly
with your computer’s memory. When you “go below”” BASIC
into the monitor mode, BASIC is no longer active. If you type
RUN, it will not execute anything. BASIC commands are not
recognized. The computer waits, as usual, for you to type in
some instructions. There are only a few instructions to give to
a monitor. When you’re working with it, you're pretty close to
talking directly to the machine in machine language.

The 128 has a monitor in ROM. This means that you do
not need to load the monitor program into the computer; it’s
always available to you. You can use hex, decimal, or binary
numbers with the monitor. Signify hex as usual with $ before
the number and use % before binary numbers. However, you
don’t need to use the $ when giving an address for disassembly
or assembly, or a range of addresses for hunting, and so forth.
Hex is assumed in these cases as the default condition.

Also, you can specify any memory bank by giving its
number before the actual address number. For example, M
3000 will show you what’s in address 3000 (hex) and beyond
of bank 0 (always the default bank). To see memory in bank 1
you would type M 13000.

Debugging is the main purpose of a monitor. You use it to
check your ML code to find errors. Some computer manufac-
turers, Apple, for instance, even call their monitor a debugger.

You enter the 128 monitor by hitting the F8 key (SHIFT-
F7). You will see the registers displayed and the cursor below
the display. Here are the monitor instructions:

1. Assemble

A (address) (mnemonic) (argument) will assemble a line of source
code.

Example: 2000 LDA #$15

will assemble that at address 02000. Remember that anytime
you want to access memory banks other than bank 0, you can
type the bank number before the actual memory address. If
you want to assemble to bank 1, address 2000, you would
type 12000 LDA #$15.
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If you make a mistake, a question mark (?) will appear on
the line. As always, you can cursor up and correct your mis-
take; RETURN always enters each line. Also, like auto-
numbering, the next address for assembly will automatically
appear on the line below, so you need specify the address
only when you first start assembling.

You can also use the period (.) to signify assembly. The
monitor prints periods at the start of each line.

This mini-assembler cannot use labels and has other
drawbacks. However, it’s a fine tool for testing small ideas, a
few lines long, and for making little adjustments to a larger
program while debugging.

2. Compare memory
C (start of block) (end of block) (start of second block)

To see whether two sections of memory are identical or
which bytes differ, you type C followed by the start and end
address of the first block (which lets the assembler also cal-
culate the length of the blocks being compared) and then give
the address of the start of the second block.

Example: C 1000 1020 4000

This will print the addresses of any bytes which do not
match when the blocks of memory between 1000-1020 and
4000-4020 are compared. This facility can be useful if you
want to see where two versions of the same routine differ. If,
for example, version 5 of the game you're writing always
works, but version 6 turns the screen black, you can load the
two versions into memory, targeting one of them to a different
location in memory (see a special feature of Load described
below), and then compare them to see where they differ.
Alternatively, you could use a BASIC-Aid type program to
compare their source codes. When possible, that’s the pre-
ferred method.

3. Disassemble
D (start address) (optional end address)

This allows you to see the ML equivalent of a program
listing in BASIC. Raw object code in memory will be printed
to the screen in a readable, rough source code form, as it ap-
pears when you type in source code using A (Assemble) de-
scribed above. There still won't be labels, but you can
interpret what a piece of code does.
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Chapter 3

D, like M described below, can simply be given a start ad-
dress, in which case it disassembles about 20 bytes and stops.
Alternatively, you can give both a start and an end address,
whereupon it will scroll through the range of memory re-
quested. You can always slow down the scrolling by holding
down the Commodore key, freeze the scroll with CONTROL-S,
or end the scroll with RUN/STOP.

Disassembly is perhaps the single most useful command
in the monitor. You will sometimes be trying out a program
you've written, and, bing (the monitor makes a noise when
you enter it this way), you'll find yourself staring at the reg-
ister display. This means that your program failed, but luckily
the computer didn’t harden into immobility (the worst kind of
bug to fix). Instead, you gained some valuable information:
You can look at the PC (Program Counter) and see where you
fell into monitor mode (disassemble a few bytes before the PC
address and you'll find the 00 (BRK) that sent you into the
monitor). Not only that, but sometimes the values in the accu-
mulator or Y or X registers will be a clue about what went awry.

In tough situations, where a bug is enigmatic, you'll find
yourself following a path through your program, dis-
assembling until you find a JSR or JMP, then disassembling
the subroutine indicated by the JSR, trying to see where your
program goes off the rails. One obvious case would be if the
disassembler reported that it couldn’t make sense of your code
(it will print ??? when it cannot disassemble something). This’
probably means that you typed in your source code incorrectly
($#B0 with the # in the wrong place, for example) which con-
fused the assembler.

When debugging larger programs, you'll be deliberately
inserting BRK at key points in the code to force the computer
into the monitor so that you can examine the registers or key
variables (maybe your zero page pointers) in your program.
Here D helps you discover which of perhaps several break-
points you’ve landed on.

You can also make direct modifications to the code. You
can’t change the hex numbers, the object code, but you can
cursor over and change the source code. For example, .B00 A9
00 LDA #$00 can be altered by moving to the #$00 and
changing it to, say, #805 and hitting RETURN. Because the
period at the start of the line is the same as the A (Assemble)
command, you’ll have activated the mini-assembler.
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If you do want to change the object bytes, you can put a
greater-than symbol (>) at the start of the line and then
change the 00 to 05, but you must get rid of the LDA #$00
which follows on that line. The > (memory change) command
cannot make sense of LDA #$00. The fastest way to eliminate
the end of the line is ESC then Q, one of the 128’s convenient
escape code tricks. Note that you press ESC, but do not hold it
down while pressing Q.

The reason we bother with this Disassemble/Memory
change method is that sometimes you’ll want to insert NOPs
directly into your program to eliminate something temporarily
and test the program without it. Let’s say that you have a
change screen color subroutine at $3500 and you suspect it
might be what’s crashing your program.

LDA #$04
JSR $3500
LDY #$03

might be a segment of your program. You could disassemble
this, insert EA EA EA over the 20 00 35 which represented
your jump to that suspect subroutine, and then rerun your
program. EA is the code for NOP, NO oPeration. It does noth-
ing, so you've temporarily removed that entire subroutine
from the program you're testing (if this is the only JSR to that
subroutine). Alternatively, you could place a 60 (RTS, ReTurn
from Subroutine) at $3500 to remove it from all attempts to
call it throughout your program.

These and other debugging tricks will occur to you as you
test and work with your programs. The Disassemble function
will prove invaluable.

It's also instructive to use the disassembler to follow the
logic of the BASIC in your 128. Try looking at bank 15
wherein BASIC, I/0, and the Kernal reside between $4000—
$FFFF. Just D F4000. To continue, type D RETURN repeat-
edly. Around F41C0 you’ll start to see lots of ??? which means
it’s likely to be a table of some sort. Switch to M F41C0 to see
the meaning of this section. See if you can locate the BASIC
keywords.

Because it’s such a valuable tool, let’s briefly review the
elements of disassembly. A disassembly will contain three fields
(a field is a ““zone” of information). The first field will contain
the address of an instruction (in hex). The address field is
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somewhat comparable to BASIC’s line numbers. It defines the
order in which instructions will normally be carried out.

The second field shows the hex numbers for the instruc-
tion, and the third field is where a disassembly differs from a
“memory” or “hex” dump (see Memory below). This third
field translates the hex numbers of the second field back into a
mnemonic and its argument.

Here’s an example of a disassembly:

2000 A9 41 LDA #$41
2002 8D 23 32 STA $3223
2005 A4 99 LDY $99

Recall that a dollar sign shows that a number is in hexa-
decimal. The pound sign (#) means “immediate’”” addressing
(put the number itself into the A register at 2000 above).
Confusing these two symbols is a major source of errors for
beginning ML programmers.

You should pay careful attention to the distinction be-
tween LDA #$41 and LDA $41. The second instruction (with-
out the pound sign) means to load A with whatever number is
found in address $41 hex.

LDA #$41 means put the actual number 41 itself into the
accumulator.

If you are debugging a routine, check to see that you've
got these two types of numbers straight, that you've loaded
from addresses where you meant to (and, vice versa, that
you've loaded immediately where you intended).

4. Fill

F (start address) (end address) (value)

This fills the zone between start address and end address
with the byte value which follows. It's most useful when try-
ing to see what areas of memory are unsafe to use, particularly
when you are modifying a commercial program like a word
processor and are unsure where it might be storing variables.
Load the word processor, F 0BO0 OBFF 00 (filling the cassette
buffer with zeros), and put the word processor through its
paces. Then, enter the monitor and examine the “snow,” the
zeros you sprayed there, to see if any of them changed, if the
word processor left any tracks. This is a quick way to find out
if your use of this buffer will conflict with the word proces-
sor’s need for the same space.
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5. Go
G (address)

You can run an ML program from within the monitor
with the G instruction. The program must end with a BRK if
you expect to return to the monitor when the program ends.
Try this: Type A BOO LDA #$15 and then hit RETURN. Then
type TAY (and press RETURN), then BRK (and RETURN
twice). You've created a little program that puts $15 into the
accumulator, transfers it to the Y register, and stops. Type R to
see the condition of the accumulator and the Y register. Then
type G B0O and see what happened to the accumulator and Y
registers.

Note that you can Go to Mars if you give G the wrong
address. If you've written something lengthy, you might want
to first save it with S (described below) to be on the safe side.
Also, remember that the ML must end with a BRK; otherwise,
you may be kicked out of the monitor back into BASIC or the
program may crash altogether. For routines that normally end
with RTS, simply change the RTS to BRK to use the G instruc-
tion (remember to change the BRK back to an RTS after
you've tested the routine). Or, if you don’t need the register
display that G provides when the program ends you can use
the J instruction instead (see below).

6. Hunt
H (start address) (end address) (pattern)

This can be useful when you're exploring a commercial
program or BASIC or even want to find a particular location in
your own program. It will search between the start and end
addresses for a match to the pattern you give it. The pattern
can be a series of hex numbers or a character string. Let’s try
locating BASIC'’s table of keywords:

H F4000 FFFFF ‘PRIN

and wait a few seconds while the monitor reports where it
finds matches. (We left off the T in PRINT because BASIC
stores its keywords with the final letter “shifted” by adding
128 to it. This is how it knows the end, the length of each
keyword.) Then, use M (described below) to see the memory
and look at whatever you find.

Be sure to use a single quotation mark to set off a charac-
ter string.
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Here’s another use for H. Assume that you know that a
certain pattern of bytes is going to appear in BASIC and you
want to find them. Let’s look for all locations where BASIC
switches in ROM bank 15. To get the pattern, type:

A B00 LDA #0
STA $FF00

and you can then see what pattern of bytes to look for. So
" now hunt:

H F4000 FFFFF A9 00 8D 00 FF

and then you can disassemble to learn more about what’s go-
ing on in your ROM.

7. Jump
J (address)

This instruction is similar to G, but if the ML program be-
ing executed ends with RTS it doesn’t break back into the
monitor with a display of registers. Instead, it just quietly re-
turns to the monitor with no special display—just the usual
blinking cursor. You might want to use ] if you are testing a
routine which affects the screen, such as printing a message.
You'd get cleaner results with J than G in this case.

Remember that ML programs you run with the J instruc-
tion should end with RTS if you want to avoid the register dis-
play. If the ML ends with BRK, the effect will be the same as
if you had used the G instruction.

8. Load
L (“filename”) (,8 for disk or ,1 for tape) (,optional load address)

If you’ve worked with ML on a computer which has no
monitor, you'll welcome the convenience of this and Save, its
companion function. With L you can retrieve any file from
tape or disk (it’s like BASIC’s BLOAD command), and, even
more helpful, you can load an ML program to an address
which is different from the one whereat it normally resides,
different from the address from which you originally saved it.
This is a good way to test versions of a program (see Compare
above).

If you write a program in bank 1 and save it, it will load
back into bank 0 unless you specify bank 1 in the optional
load address field. Notice, too, that commas are necessary
with this command to separate the argument fields. Load and
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Save are odd this way; you must type L “FILENAME”,8 rather
than L “FILENAME" 8.

9. Memory
M (optional start address) (optional end address)

Among the most useful of all monitor commands, this
memory display shows you a visual display of your memory.
It's sometimes called a hex dump because you will see the
value in each memory cell displayed as a two-character hex
digit. To the right, you'll see the same bytes displayed as
characters when possible. Unprintable characters are signified
by a period (.). You can change any of the bytes (except the
address) as long as the > symbol appears at the first position
in the line. You can thus quickly check your tables and vari-
ables to see if they're behaving properly or modify them for
testing purposes.

If you provide no argument, M will show you the zone of
memory most recently accessed. If you give a start address,
that’s the memory you’ll see. As before, if you use a number
like B0OO, you'll see bank 0. If you want to specify another
bank, type its number first: 10B00 would show you B0O0 in
bank 1.

10. Registers
R

This will show you the current status of your registers. It
looks like this:

PC SR ACXR YR SP
; 00B09 30 00 05 FF F9

The PC is the program counter, the place in memory
where you last were when the monitor was invoked. Perhaps
you had a BRK instruction which forced your program to halt
so you could test it. If you have a BRK at 0B07, the PC will
show 0B09 as above. It's always two bytes past where you ac-
tually break for some reason. Just remember that this is what
happens. You can locate the BRK with Disassemble described
above.

The SR is the status register (the byte that holds the
flags). It’s not useful in this form because it’s too hard to fig-
ure out what flags are up or down to achieve, as above, for ex-
ample, a total byte value of $30. The AC is the accumulator;
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the X and Y registers follow. The SP is the stack pointer. For-
get about it, too.

You can cursor over and directly change the values in the
AC, XR, or YR, which can be useful sometimes during testing.
Note that the monitor always supplies that first digit
signifying bank number, but for you it’s optional. Most of the

time you'll be in the default bank 0.

11. Save

S (“filename") (,8 for disk or ,1 for tape) (,start address) (,end address
plus one)

S saves a section of memory to disk or tape, like BSAVE.
The commas are necessary to separate the fields as shown.
You could save screen RAM if you wanted or anything else,
but the most common use for this is to save ML programs.
The bank conventions and other rules described under Load
above apply to Save as well.

Notice, however, a special oddity here: The end address
must be one byte beyond the actual end of your program. Again,
nobody who knows why, tells, but you've got to remember
this mysterious fact or you'll lop off your RTS or BRK or what-
ever is the highest byte in your program.

00B00 A9 00 LDA #$00
00B02 8D 00 FF  STA $FF00
00B05 60 RTS
00B06 00 BRK

If you want to save this and include the RTS, you must S
“FILENAME",8,0B00,0B06, and if you wanted to include that
BRK, you’d need to specify 0B07 as the end address.

Remember, too, that if you save from within bank 1 or
somewhere other than bank 0, that information is not trans-
ferred to the disk with the program. You must specify which
bank you are saving from if it's not 0, but when you go to
load your program back in, it will load into bank 0 unless you
specify the bank in the optional address field at the end.

12. Transfer

T (start address of source) (end address of source) (start address of
target)

This isn’t too useful since you can load to any target. It
does not make your programs relocatable. It simply, dumbly
moves the zone of bytes between start and end address of
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source and sets them down unchanged at the target. So, if
you've got a direct JMP to some address within your ML pro-
gram, JMP $B09 for example, the new version after the trans-
fer will still JMP $B09 to a subroutine which is no longer at
that location. Also, references to tables like error messages will
be similarly erroneous. It’s difficult to think of a real use for
this function, but it’s there if you ever come up with one.

13. Verify

V (“filename”) (,8 for disk or ,1 for tape) (,optional alternate start
address)

This reports any errors caused by Save or it could be a
way of comparing two program versions for identity. In prac-
tice, because the Commodore mass storage systems are so
highly intelligent and reliable, you may find you’'ll never need
to verify 1/0.

14. X (Exit to BASIC)
X
Takes you out of the monitor.
15. @ (communicate with disk drive)
@ (unit number), (command string)

You can see the directory from the monitor by @,$ or see
the disk status (as with ?DS$ in BASIC) by @ with no com-
mand string at all. You can also initialize a disk with @,I, but
you should be in BASIC for things like that anyway.

16. 8, +, &, %

These symbols are put directly before a number to in-
dicate whether it is hex (the default, so you don’t need $),
decimal, octal (forget this; you'll probably never meet anyone
who uses octal, base 8, numbers), and binary.

Thus, if you want to assemble LDA #2 you can do it three
useful ways: decimal (LDA #+2), hex (LDA #$02), or binary
which shows you how the bits look in the byte (LDA
#%00000010). Whichever form you use, the 128 will convert
the input to hex when you enter the line. No matter which
way you enter the example instruction, it will change to LDA
#$02 after you press RETURN.
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Another use for these symbols is to type in a number at
the start of a line in the monitor and let it translate the num-
ber into the four number bases. If you want to know what
decimal 1024 is in hex, type:

+1024 :
then press RETURN and you'll see:

$0400

+1024

&2000
%10000000000

Conversely, you can see what a hex number would be in deci-
mal by typing:
$400

or take a look at binary. This can be useful, particularly when
looking at someone else’s program or working with a map of
ROM such as the one in Appendix C.

Using the Monitor

You will make mistakes. Monitors are for checking and fixing
ML programs. ML is an exacting programming process, and
causing bugs is as unavoidable as mistyping when writing a
letter. It will happen, be sure, and the only thing for it is to go
back and try to locate and fix the slip-up. It is said that every
Persian rug is made with a deliberate mistake somewhere in
its pattern. The purpose of this is to show that only Allah is
perfect. This isn’t our motivation when causing bugs in an ML
program, but we’ll cause them nonetheless. The best you can
do is try to get rid of them when they appear.

Probably the most effective tactic, especially when you are
just starting out with ML, is to write very short subroutines.
Because they are short, you can more easily check and exam-
ine them to make sure that they are functioning the way they
should. Let’s assume that you want to write an ML subroutine
to ask a question on the screen. (This is often called a prompt
since it prompts the user to do something.)

The message can be PRESS ANY KEY. First, we'll have to
store the message in RAM somewhere. Let’s put it at hex $2000.
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ASCII
2000 80 P
2001 82 R
2002 69 E
2003 83S
2004 83S
2005 32
2006 65 A
2007 78 N
2008 89 Y
2009 32
200A 75 K
200B 69 E
200C 89 Y
200D 00

(The final zero is a special signal to the computer called the
delimiter which shows that the message is concluded.)

We'll put our “print-it-out” subroutine at address $1F00, a
RAM zone where BASIC programs usually reside. So, we've
got the data at address $2000 and the subroutine that uses the
data located at $1F00. All this is entirely arbitrary. The ML
programmer can put things wherever in RAM he or she
wishes as long as the location doesn’t conflict with other

. needs of the computer as would be the case in zero page.
Remember, you can safely put your ML between $0B00-$0BFF
or $1C00-$FFO00 in bank 0 and anywhere between $0400-
$FF00 in bank 1 (or between $1C00-$4000 in bank 15).

We haven’t gotten into actual programming yet, but this
example is a good place to see if you can spot an error in ML
programming. This subroutine will not work as printed. There
are two errors in this program. See if you can spot them:

1F00 LDY #$00  Set up the Y register to count events.

1F02 LDA $2000,Y Get the first character from the data.

1F05 CMP $00 Is it the delimiter?

1F07 BNE $1F0A If not, continue on.

1F09 RTS It was zero, so quit and return to whatever
JSRed, or called, this subroutine.

1F0A STA $0400,Y The 128’s text display area in 40-column
mode.

1FOD INY Raise the counter by one.

1FOE JMP $1F00  Always JMP back to address $1F00.

Since we haven’t yet gone into addressing or opcodes
much, this is like learning to swim by the throw-them-in-the-
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water method. Nevertheless, see if you can make out how
these instructions interact. Here’s some help: a BASIC version
of the same routine, containing the same errors.

10 DATA P,RES,S, ,AN,Y, ,KE Y

20Y=0

30 READ X: IF X <> PEEK(0) THEN 50

40 RETURN

50 POKE 1024 + Y, X

0Y=Y+1

70 GOTO 20

This subroutine won’t work. In the ML version, you'll find
two of the most common bugs in ML programming. Unfortu-
nately, they are not obvious bugs. An obvious bug would be
mistyping LDS when you meant LDA. Any assembler would
alert you to this error by printing an error message to let you
know that no such instruction as LDS exists in 8502 ML.

No, the bugs in this program are errors in logic, in the
flow or sense of the thing. If you disassemble it, it will also
look just fine to the disassembler program, and no error mes-
sages will be printed out by the disassembler either.

But, the routine will not work the way you want it to.
Before reading on, see if you can spot the two errors. Also, see
if you can follow the events as the ML routine runs through its
loop, picking up the characters in the message and supposedly
depositing them onscreen. Where does the computer go after
the first pass through the code? When and how does it know
that it’s finished with its job?

Two Common Errors
A very common bug, perhaps the most common ML bug, is
caused by accidentally using zero page addressing when you
mean to use immediate addressing. We mentioned this distinc-
tion before, but it is the cause of so much puzzlement to the
beginning ML programmer that we’re going to pound away at
it several times in this book. Zero page addressing looks very
similar to immediate addressing. Zero page means that you are
dealing with one of the cells, or bytes, in the first 256 ad-
dresses in RAM memory in the computer. The lowest locations
possible.

A page of memory is 256 bytes. Page 1 is from addresses
256 through 511 and is special. It’s called the stack, and the
computer has a special use for it. We'll get to it later, but don’t
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try storing anything in page 1 unless you're fond of havoc.
Addresses 512-767 comprise page 3 which is the input buffer
(where a line is stored when you type it in) for BASIC. The
128 text screen memory starts at address $0400 (1024 in deci-
mal), and this is the start of page 5. And so on, in 256-byte
blocks, on up memory to the very top, page 255.

In contrast to zero page addressing is immediate address-
ing. Immediate addressing means that the number you're deal-
ing with is right within the ML code (not somewhere else in
memory). It means that you knew what number you were
dealing with and put it right into your program when you
wrote the program. Immediate addressing means that the
number directly follows an instruction; it’s the argument, the
operand, of an instruction. LDY #0 is immediate addressing. It
puts the number 0 into the Y register (see line 1F00 in the ex-
ample routine above).

LDY 0 is not immediate addressing, and you very well
might not get a zero into the Y register. LDY 0 is zero page
addressing. LDY 34 is also zero page addressing. Using any
address lower than 256 would mean zero page addressing.
LDY 34 might put anything, any number, into the Y register
because whatever number is in address 34 will be placed into
the Y register. The key is that # symbol, the number symbol.
If you mean to load the number 34 into the Y register, use
LDY #34. Think of it as LoaD Y with number 34.

If you mean to fetch whatever is currently in address 34,
use LDY 34. If you mean hex address 34, use LDY $34. It's
easy and very common to mix up these two modes—immedi-
ate loading which uses # and zero page which has no symbol
except, perhaps, the $ to identify a hex number. So, look for
this error first when debugging a faulty program. Check to see
that all your zero page addressing is supposed to fetch from
RAM and that all your immediate mode numbers are sup-
posed to come from within the ML code itself, immediately
following the instruction.

In our example ML program, LDY #0 is correct—we do
want to set the Y register to zero so that it can help us put the
characters in the proper places on the screen (STA $0400,Y
stores each character at address 0400, the screen, plus the cur-
rent value of Y). For this purpose, we want the immediate, the
actual, number zero.
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Take a close look, however, at the instruction at location
$1F05. Here we are trying to see if we've picked out that zero
in the message that tells us the message is finished. We want
to CoMPare to the number zero. But, we left off the # symbol
that tells the computer to use the number zero. Instead, we're
going to cause a comparison against whatever unpredictable
value might be in location zero, address zero. To fix this bug,
the instruction should be changed to read CMP #0 so that it
will be immediate mode, not zero page mode. (If this confuses
you, take a look at line 30 in the BASIC version to see the
same flaw in a familiar context. If it still confuses you, don’t
worry, we'll be going over all this in much greater detail in
Chapters 4 and 6.)

It Never Quits

The second bug in this example routine is also a very common
one. The subroutine, as written, can never quit; it will end-
lessly loop. Loop structures are usually preceded by a short
setup of some kind. You have to initialize counters before the
loop can begin because you have to tell it where to start and
how many times to loop. In BASIC, FORI = 1 TO 10 tells the
computer to cycle ten times.

In ML, we set the Y register to zero and let it act as our
counter. In this particular routine, we don’t use Y to tell us
when to stop (that’s the job of the delimiter, the embedded
zero at the end of the message itself). Instead, Y serves two
other purposes. It kills two birds with one stone. It is the off-
set (the pointer to the current position in a list or series) to
load the message in the data and is also the offset to position
the letters of the message on the screen. Without Y going up
one (INY) each time through this loop, we would always print
the first letter of the message and always print it in the first
position on the screen.

What's the problem? It’s that JMP instruction at $1FQE.
We should be jumping back to address $1F02, but the J]MP
tells us to jump back to $1F00. As things stand, the Y register
will always be reset to zero, there will never be a chance to
read through the message and pick up that 0 which ends
things, and we cannot therefore ever exit this loop. We will
endlessly cycle, printing P over and over again. Y will never
go up past zero because each loop puts a zero back into Y.
Look at the relationship between lines 70 and 20 in the BASIC
example.
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Tracking Them Down and Nabbing Them

The monitor will let you locate these and other errors. You can
replace an instruction with a zero (the BReaK command)
which will stop your ML program midrun and let you see the
condition of your variables and what’s going on in the reg-
isters at the breakpoint.

If this doesn’t help, you can get more specific by single
stepping through your program in order to discover, for ex-
ample, that you are using CMP 0 when you meant CMP #0.
Unfortunately, the monitor built into this otherwise excellent
programmer’s computer does not contain one of the best
debugging tools: single-step tracing. With this, you see the re-
sults of each instruction in turn as the computer executes your
code one step at a time. That can be a real shortcut to locating
errant programming. Monitor add-ons for all the previous
Commodore computers have included single-step functions
and, doubtless, one will be published in COMPUTE! magazine
or COMPUTE!’s Gazette soon. But, as of this writing, no such
tool is yet available.

It would also be easy, by stepping, to notice that your Y
register is being reset to zero every time through the loop. For
single stepping, it’s good to first make a printout of the sus-
pect area of your program so that you can follow along during
the single stepping. If the Y register keeps turning back into
zero, that clues you that this register isn’t cooperating; it's not
counting up each time through the loop the way you intended
it to. These and other errors, if not always immediately ob-
vious, are at least discoverable from within the monitor.

Also, the disassembler function of the monitor will permit
you to study the program and look, deliberately, for the cor-
rect use of #00 and $00. Since that mixup between immediate
and zero page addressing is so common an error, always check
for it first. '

Programming Tools

The single most significant quality of monitors which contrib-
utes to easing the ML programmer’s job is that monitors, like
BASIC, are interactive. This means that you can make changes
and test them right away, right then. In BASIC, you can find
an error in line 120, make the correction, and run a test im-
mediately. You can insert a STOP in BASIC or a BRK in ML
and look at your variables and registers.
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It’s not always that easy to locate and fix bugs in ML:
There are few error messages which point out faulty program
logic, so finding the location of a logic bug can be difficult.

But a monitor does allow interactivity: You make changes
and test them on the spot. This is one of the drawbacks of
complex assemblers, especially those which have several steps
between the writing of the source code and the final assembly
of executable object code (ML which can be executed). LADS,
however, was designed to maximize interactivity, and you
should find that its speed of assembly, its open architecture
(you can easily modify it, adding your own error messages and
bug traps), and its BASIC-like environment will all contribute
to quick program adjustments and quick testing.

Unfortunately, other sophisticated assemblers often re-
quire several steps between writing an ML program and being
able to test it. These assemblers can require linkers, relocatable
loaders, mapping, global/local variable definition, macros,
separate and clumsy source code editors, and other “features”

-which contribute little to the actual assembly of a program or

to the comfort of the programmer. If you don’t already know
the function of these “enhancements,” count it a blessing.
They greatly retard program development except in pro-
fessional, programming-by-committee situations. These func-
tions make it easier to rearrange ML subroutines, put them
anywhere in memory without modification, and so forth. They
make ML greatly modular (composed of very small, self-suf-
ficient modules or subroutines), but they also make it far less
interactive. You cannot easily make a change and see the ef-
fects at once.

One obvious reason for this kind of assembler, for it hav-
ing value at all, is that you want to discourage interactivity
when five people are writing separate sections of the same
program. In that environment, all programmers must play by
the same rules and things like macros and relocatability have
value. For the individual programmer, however, restrictions
like these can prove, in the long run, more of a hindrance than
a help. Industrial-strength linker/assemblers are, for the in-
dividual programmer, rather like installing pay toilet stalls in
your bathroom. For most people, it's not merely unnecessary,
it’s downright inconvenient.

However, using the monitor’s mini-assembler, or LADS
from this book, you are right near the monitor level, and fixes
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can be easily and quickly tested. In other words, the assem-
blers which are best for individual programmers trade ef-
ficiency for group-programming communication requirements.
Personal assemblers, like personal computers, should reflect
the needs of the programmer, not the needs of industrial,
programming teams. Personal assemblers should involve little,
if any, preplanning, less forethought, less abstract analysis,
and no rules for communicating between one programmer and
another. If something goes awry, you can just try something
else until it all works. Not only does this help you learn, it’s
also significantly the fastest way to program.

Plan Ahead or Plunge In? _

Some people find such trial-and-error programming un-
comfortable, disgraceful even. Industrial assemblers (and some
assemblers currently sold for personal use) discourage
interactivity, requiring flowcharts, even expecting the pro-
grammer to write out a program ahead of time on paper and
debug it before even sitting down at the computer.

In one sense, these large assemblers are a holdover from
the early years of computing, when computer time was ex-
tremely expensive.

There was a clear advantage to coming to the terminal as
prepared as possible. Interactivity was costly. But, like the
increasingly outdated advice urging programmers to worry
about saving computer memory space, it seems that strategies
designed to conserve computer time are also anachronistic.
You can spend all the time you want on your personal
computer.

Complex assemblers tend to downgrade the importance of
a monitor, to reduce its function in the programming process.
Some programmers who’ve worked on large IBM mainframe
computers for 20 years do not know what the word monitor
means in the sense we are using it.

To them, monitors are CRT screens. The machine lan-
guage tools used for years by mainframe programmers often
have what we call a monitor, but it will be seriously restric-
tive. It can, for example, have no provision for saving an ML
program to disk or tape from within the monitor.

Whether or not you prefer the interactive style of personal
programming, its greater reliance on the monitor and on trial-
and-error programming, is your decision. If you're used to
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Chapter 3

group programming, you might find it difficult to abandon the
preplanning, the flowcharts, and all the rest. The choice is ul-
timately a matter of personal style.

Time Is Cheap

Some programmers are uncomfortable unless they have a
fairly complete plan before they even get to the computer key-
board. Others are quickly bored by elaborate flowcharting,
“dry computing’ on paper, and can’t wait to get on the com-
puter and see-what-happens-if.

Perhaps a good analogy can be found in the various ways
that people make telephone calls. When long-distance calls
were extremely expensive, most people made lists of what
they wanted to say and carefully planned the call before dial-
ing. They would also watch the clock during the call. (Some
still do this today.) As the costs of phoning came down, many
people found that spontaneous conversation was more satisfy-
ing. It's up to you.

Computer time, though, is now extremely cheap. If your
computer uses 100 watts and your electric company charges 5
cents per kilowatt-hour, never turning your machine off would
only cost about 12 cents a day.
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Addressing

The 8502 processor is an electronic brain. It performs a variety
of manipulations with numbers to allow us to write words, draw
pictures, control outside machines such as recorders and disk
drives, calculate, and do many other things. It was designed to
be logical and fast, to work accurately and efficiently.

If you could peer down into the CPU (Central Processing
Unit), the heart of the processor, you would see numbers be-
ing delivered and received from memory locations all over the
computer. Sometimes the numbers arrive and are sent out, un-
changed, to some other address. Other times they are com-
pared, added, or otherwise modified, before being sent back to
RAM or to a peripheral.

Writing an ML program can be compared with planning
the activities of this message center. This can be illustrated by
thinking of computer memory as a City of Bytes with the CPU
acting as the main post office (Figure 4-1). The CPU uses four
tools to do its job: three registers, a program counter, a stack
pointer, and seven little one-bit flags.

The monitor, if you type R (for registers), will display the
present status of these tools. It looks something like this:

PC SR AC XR YR SP
;FB000 30 01 00 FF F8

A, X, and Y are the registers, SR is the processor status flags
(each bit in this byte is a flag), PC is the program counter (the
address of the last instruction executed plus two before we en-
tered monitor mode), and SP is the stack pointer. You can
more or less let the computer handle the stack pointer. It
keeps track of numbers, usually return-from-subroutine ad-
dresses, which are kept together in a list called the stack.

The computer will automatically manipulate the stack
pointer. It will also handle the program counter (PC) which
keeps track of where you are located at any given time within
the computer. For example, each ML instruction can be either
one, two, or three bytes long. TYA has no argument and is the
instruction to transfer a number from the Y register to the
accumulator. Since it has no argument, the PC can locate the
next instruction to be carried out by adding one to itself. If the
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PC held $4000, it would hold $4001 after execution of a TYA.
Whenever you insert a BRK instruction, you cause the pro-
gram to halt at that point and enter monitor mode. The PC
shows you where, in your program, you halted.

LDA #$01 is a two-byte instruction. It takes up two bytes
in memory, so the next instruction to be executed after LDA
#$01 will be two bytes beyond it. In this case, the PC will
raise itself from $4000 to $4002. But we can just let it work
merrily away without worrying about it other than to note the
location when setting several BRKs in a program to debug it.

The Accumulator: The Busiest Register

SR, A, X, and Y, however, are our business. They are all eight
bits, or one byte, in size. They are not located in memory
proper. You can’t PEEK them since they have no address like
the rest of memory. They are zones of the CPU. The A reg-
ister, most often called the accumulator, is the busiest place in
the computer. The great bulk of the mail comes to rest here, if
only briefly, before being sent to another destination.

Any logical transformations (EOR, AND, ORA) or
arithmetic operations leave their results in the accumulator.
Most of the bytes streaming through the computer come
through the accumulator. You can compare one byte against
another using the accumulator. And nearly everything that
happens which involves the accumulator will have an effect
on the status register (SR, the flags). We won't need to actually
work directly with the status register, but the information it
holds will be significant because several important instruc-
tions, like Branch if EQual (BEQ) test to see if a flag is up or
down when deciding where to send the program for the next
task. BEQ looks at the SR and checks whether or not the Z
flag (zero was the result of the most recent event) is up.

The X and Y registers are similar to each other in that one
of their main purposes is to assist the accumulator. They are
used as addressing indexes. There are some methods of
addressing that we'll get to in a minute which add an index
value to another number. For example, if the X register is cur-
rently holding a five, LDA $4000,X will load the byte in ad-
dress $4005 into A. In other words, the real address when
you're using indexed addressing is the number plus the index
value. If X has a six, then we load from $4006. Why not just
LDA $4006? The reason is that it’s far easier to raise or lower
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an index inside a loop structure than it would be to write in
each specific address literally.

A second major use of X and Y is in counting and loop-
ing. We'll go into this more in the chapter on the instruction
set. We'll also have some things to learn later about SR, the
status register, which holds some flags showing current con-
ditions. Among other things, the SR can tell a program or the
CPU if there has been a zero, a carry, or a negative number as
the result of some operation. Although it’s not important to be
able to work directly with the status register, knowing about
carry and zero flags is especially significant in ML. The
branching instructions will check these flags for you, but you
should be aware of what some of the flags signify.

But we can leave learning about the instructions until we
get to Chapter 6. For now, the task at hand is to explore the
various “classes” of mail delivery, the 8502 addressing modes.

The computer must have a logical way to pick up and
send information. Rather like a postal service in a dream—
everything should be picked up and delivered rapidly, and
nothing should be lost, damaged, or delivered to the wrong
address. '

The 8502 accomplishes its important function of getting
and sending bytes (GET and PRINT would be examples of the
same activity in BASIC) by using several addressing modes.
There are 13 different ways that a byte might be “mailed”
either to or from the central processor.

When programming, in addition to picking an instruction
(of the 56 available to you) to accomplish the job you are
working on, you must also make one other decision. You must
decide how you want to address the instruction—how, in other
words, you want the mail sent or delivered. There is some
room for maneuvering, however. It will rarely matter if you
should choose a slower delivery method than you could have.
Nevertheless, it is worth knowing about the various address-
ing modes; most of them are designed to be helpful during
some particular programming activity.

Absolute and Zero

Let’s picture a postman’s dream city, a city so well planned
from a postal-delivery point of view that no byte is ever lost,
damaged, or sent to the wrong address. It's the City of Bytes
we first toured in Chapter 2. It has 65536 houses all lined up
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on one side of a street (a long street). Each house is clearly la-
beled with its number, starting with house 0 and ending with
house 65535. When you want to get a byte from or send a
byte to a house (each house holds one byte), you must “ad-
dress” the package (See Figure 4-2).

Let’s look at the most elementary mode of addressing. It’s
quite popular and could be thought of as “first class.” Called
absolute addressing, it can send a number to or receive one
from any house in the city. It's what we normally think of first
when the idea of addressing something comes up. You just put
the number on the package and send it off. No indexing or
special instructions. If it says 2500, then it means house 2500.

1000 STA $2500
or
1000 LDA $2500

These two, STore A and LoaD A, STA and LDA, are the
instructions which get a byte from or send it to the accu-
mulator. The address, though, is those numbers following the
instruction. The item following an instruction is sometimes
called the instruction’s argument. You could have written the
above addresses several ways. Writing $2500, however, tells
the computer to carry out the instruction with respect to ad-
dress $2500, to store or load the byte from that location. This
kind of addressing uses just a simple $ (to show that this is a
hex, not decimal, number) and a four-digit number. You can
send the byte in the accumulator to anywhere in normal 64K
memory by this method (or retrieve it from anywhere).
Remember, too, that if you send a byte from the accumulator,
it also remains in the accumulator. It's more a copying than a
literal sending. Getting and sending to the 128’s alternative
RAM banks is another matter; it will be covered below.

Heavy Traffic in Zero Page
A second addressing mode, called zero page, we've touched on
before. If you are sending a byte down to anywhere between
addresses 0 and 255 ($0000 and $00FF), the zero page, you can
just leave off the first two numbers: 1000 STA $07. (Remem-
ber that the 1000 is the address, the location, of the instruc-
tion, not the argument, or target, of the instruction.)

Zero page addressing, using only two hex digits or deci-
mal numbers lower than 256, is pretty fast mail service: The
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mail carrier has to worry about choosing between only 256 in-
stead of 65536 possible houses. And, also, the computer is
specially wired to service these special addresses. Think of
them being close to the post office. Things get picked up and
delivered rapidly in zero page. That’s precisely why your
BASIC and operating systems tend to use it so often.

Although zero page addressing works only with the first
256 locations in your computer, it gets more than its share of
the mail. The 128’s BASIC language, its operating system, and
disk operating systems use up most of zero page to hold flags
and other temporary information they need. Why? Because
zero page addressing is the fastest of all the addressing modes.
It's nearly instantaneous. Since the 128 has appropriated these
first 256 houses for its own use, there’s not much room left
over down there for you to store your own ML pointers or
flags, not to mention entire subroutines. You will, however,
want to squeeze in some address pointers, which we’ll get to
in a minute. After all, your programs, too, will sometimes
want the fastest possible service.

These two addressing modes, absolute and zero page, are
very common ones. In your programming, however, you prob-
ably won’t get to use zero page as much as you might want
to. You will notice on a map of the 128 that zero page is
heavily trafficked. You could cause a problem by storing
things in zero page where the 128 expects to use it for its own
purposes. You can find a map of the 128 in Appendix C. Maps
not only tell you what space must be avoided, but also where
to access the many built-in BASIC routines in your computer.
More about this later.

There are, however, safe areas for you to use down there
in those exclusive locations in lower RAM memory. The buffer
for the cassette recorder ($B00) or for BASIC activities like
floating-point arithmetic are safe when you're not using a tape
drive or BASIC. So, if you put your pointers and flags into
these addresses, things will be fine. In any case, zero page is a
popular, busy neighborhood. Don’t put any of your actual ML
programs there. Your main use of zero page will be to hold
pointers for an especially useful addressing mode called in-
direct Y that we're going to look at in detail. But you've al-
ways got to make sure that you aren’t interfering with the
128’s own requirements for space in zero page. If BASIC is ac-
tive, you can only be sure of the safety of addresses $FA-$FE.
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However, if your ML routine isn’t accessing I/O routines at
the time, you can use cassette-specific zero page areas. If it’s
not using floating point, you can use the accumulators. Some-
times, it’s easiest just to try using some addresses in zero page
and see if your program runs correctly.

While we're on the subject of places to avoid, keep out of
page 1 (decimal addresses 256-511), too. That’s for the stack,
about which more later. We'll get to the safe places in RAM
that you can use for your ML programs and their flags, vari-
ables, tables, and so on. It’s always okay to use ordinary
higher RAM as long as you keep BASIC programs from
putting their variables on top of the ML and keep the ML
from writing over BASIC (if you want them to coexist during a
program run). And, using the special addressing techniques
and bank switching we’ll discuss below, you can access the
entire 64K of bank 1 which is all blank RAM.

The safest place of all for short ML routines is between
addresses 2816 ($B00) and 3071 ($BFF) since the 128 leaves
these RAM locations essentially undisturbed unless the cas-
sette drive is active. So, when you want to practice with the
examples in this book, it's always okay to give the LADS
assembler a start address instruction of *= $B00 or its decimal
equivalent *= 2816.

Immediate

Another very common addressing mode is called immediate
addressing—it deals directly with a number. Instead of send-
ing away for the number, we can just shove it directly into the
accumulator by putting the number right in the same place
where the other addressing modes would have an address.
Let’s illustrate this:

B00 LDA $2500 Absolute mode, loading from address 2500

B00 LDA #$9 Immediate mode, put number 9 into the
accumulator

The first example will load the accumulator with whatever
number is found in address $2500. In the second example, we
simply wanted to put a $9 into the accumulator. We know
that we want the number $9. So, instead of sending off for the
$9, we just type in a $9 where we normally would put a
memory address. And we tack on the # symbol to show that
the $9 is the number we're after. Without that #, the computer
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would load the accumulator with whatever it finds at address
$9 (as in LDA $9). Without the #, it would be zero page
addressing, not immediate addressing.

In any case, immediate addressing is very commonly
used, since you often know already what number you are after
and do not need to send away for it at all. One example
would be printing out a carriage return on the screen. You al-
ready know that the code for a carriage return is 13, so you
just load it into the accumulator with LDA #13. This is similar
to BASIC where you define a variable (10 VARIABLE = 9). In
this case, we have a variable being given a known value. LDA
#9 is the same idea. (When using the mini-assembler in 128’s
built-in monitor, remember that it assumes numbers are hex
unless otherwise indicated. For the LADS assembler from this
book, LDA #10 means “put the value 10 into the accu-
mulator,” but the same instruction to the mini-assembler will
put the decimal value 16 (hex $10) in the accumulator. To use
decimal numbers you must always add a + sign: LDA #-+10.)

To repeat, immediate addressing is used when you know
what number you're dealing with; you're not sending off for
it. It's put right into the ML program code as a number, not as
an address. To illustrate immediate and absolute addressing

" working together, imagine that you wanted to copy the num-

ber 15 ($0F) into address $4000 (see Program 4-1).

Implied

Here’s an easy one. You don’t use any address or argument
with this one. You just type the instruction; it sits alone, needs
no argument.

This is probably the easiest addressing mode to grasp. It's
called implied, since the mnemonic, the instruction itself, im-
plies what is being sent where: TXA means Transfer the X reg-
ister’s contents to the Accumulator. Implied addressing means
that you do not type anything following the instruction. The
instruction defines what'’s being done without your having to
give it any argument.

TYA and others are similar short-haul moves from one
register to another. Included in this implied group are the
SEC, CLC, SED, CLD instructions as well. They merely clear
or set the flags in the status register, thereby letting you and
the computer keep track of whether or not the most recent
arithmetic resulted in a zero, whether or not a carry occurred,
and so forth. 61
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Also “implied” are such instructions as RTS (ReTurn from
Subroutine), BRK (BReaK, which is the ML equivalent of BA-
SIC’s STOP command), PLP, PHP, PLA, PHA (which “push”
or “pull” the processor status register or accumulator onto or
off the stack).

Increasing by one (incrementing) the X or Y register’s
number (INX, INY) or decreasing it (DEX, DEY) are also “im-
plied.” What all of these implied addressing modes have in
common is the fact that you do not need to actually give any
address. By comparison, an LDA $2500 (the absolute mode)
must have that $2500 address to know where to pick up the
package. TXA already says, in the instruction itself, that the
address, the destination, is the accumulator. Likewise, you do
not put an address after RTS since the computer always
memorizes its jump-off address when it does a JSR. NOP (NO
oPeration) is, of course, implied mode, too.

Relative

One particular addressing mode, the relative mode, used to be
a real headache for programmers. Not so long ago, in the days
when ML programming was done “by hand,” this was a fre-
quent source of errors. Hand computing—entering each byte
by flipping eight switches up or down and then pressing an
ENTER key—meant that the programmer had to first write a
program on paper, translate the mnemonics into their number
equivalents, and then “key” the whole thing into the machine
with that set of switches.

It was a big advance when hexadecimal numbers permit-
ted entering $0F instead of eight switches: 00001111. This re-
duced errors and fatigue.

An even greater advance was having enough free memory
so that an assembler program could be in the computer while
the ML program was being written. An assembler not only
takes care of translating LDA $2500 into its three (eight-
switch) numbers—10101101 (the code for the instruction
LDA) and 00000000 00100101 (the number $2500)—but an
assembler also does relative addressing. So, for the same rea-
son that you can program in ML without knowing how to deal
with binary numbers, you can also forget about relative
addressing. The assembler will do it for you. All you need to
remember about it is that you can’t go very far away from the
current instruction when using relative addressing and LADS
will warn you if you try.
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Relative addressing is used with eight instructions only:
BCC, BCS, BEQ, BMI, BNE, BPL, BVC, BVS. They are all
branching instructions. They force the control of the program
to branch (jump) when the overflow flag is set (or cleared);
when the carry flag is set (or cleared); or if the most recent
arithmetic resulted in equal, less than, not equal, or more than.

Branch if EQual (BEQ) would look like this in BASIC: IF X
= 0 THEN GOTO. It forces the computer to branch some-
where else in a program if something is equal to zero.

All these B instructions can branch only as far as 128 ad-
dresses forward or 127 backward from where the instruction is
located. If you were delivering the mail in the City of Bytes,
you would probably dislike relative addresses; it would mean
extra work. You would be going peacefully from house to
house up the road and then, suddenly, one of the letters has a
giant B on it and a number like —5 or +47. You've then got
to stop your orderly progress up the road and take this letter 5
houses back from the current house or 47 houses forward.

Remember that these branches, these jumps, can be a dis-
tance of only 128 bytes from their own addresses, but they
can go in either direction. Thus, if a BNE instruction above is
located in RAM at address $3500, you cannot specify $5600 as
its target. That would be much too big a branch. However, if
you do exceed the limit of branching, LADS will print “‘Branch
Out Of Range” and give you the line number where the error
was so that you can easily correct it.

When using the B instructions to branch relatively, you
specify where the branch should go by giving an address
within the boundaries of 128 bytes in either direction. Here’s
an example:

1000 LDX #$00
1002 INX
1003 BNE $1002
1005 BRK

(The X register in this example will count up by ones until
it hits 255 decimal. At that point, it resets itself to zero. When
it does become zero, that will fail to trigger the Branch if Not
Equal to zero instruction, and we will “fall through” the
branch to the BRK at $1005.)

This is how you create an ML FOR-NEXT loop. You are
branching relative to address 1003, which means that the
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assembler will calculate what address to place into the com-
puter that will get you to address $1002. You might wonder
what’s wrong with the computer just accepting the number
$1002 as the address to which you want to branch. Absolute
addressing does give the computer the actual address, but the
branching instructions all need addresses which are offsets of
the starting address. After assembling the example above, the
assembler puts the following into the computer:

1000 A2 00
1002 E8
1003 D0 FD
1005 00

The odd thing about this piece of code is the FD which
LADS will assemble into address $1004. How does $FD tell
the computer to branch back to $1002? $FD is 253 decimal.
Now it begins to be clear why relative addressing used to be
so messy to program. If you are curious, numbers larger than
127, when used as arguments for the B instructions, tell the
computer to go back down to lower addresses. What’s worse,
the larger the number, the less far down it goes. In this case,
the computer counts the address $1005 as zero and counts
backward thus:

1005 = 0 = $00
1004 = 255 = $FF
1003 = 254 = $FE
1002 = 253 = $FD

Not a very pretty counting method. It's easy for the com-
puter to deal with this, but to us it’s awkward and strange.
Fortunately, all that we LADS assembler users need do is to
assign a label to the address we're branching to and use the
label as the address (as if it were an absolute address). The
assembler will do the hard part. So, relative branching be-
comes quite easy when using LADS because you label ad-
dresses and, thus, don’t need to know the particular address to
give as the argument of the B instructions (or JSR or JMP
either). (However, if you're using the simple assembler in the
128’s monitor, you will need to specify an address; there are .
no labels permitted in the monitor.)

The strange counting method illustrated by relative
addressing is the way that the computer handles negative
numbers. It thinks of the leftmost bit in a byte as the sign bit.
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Whether the bit is on or off signifies a positive or negative
number. For the beginning ML programmer, however, it’s just
as well to forget all about negative numbers. You won't find
that you'll need to use them since practically everything you'll
want to do can be done with positive integers.

Before leaving our discussion of branching, let’s look at
one special problem that you will need to deal with if you use
the simple assembler in the monitor. When you are using one
of the branch instructions, you sometimes branch forward. Let’s
say that you want to have a different kind of FOR-NEXT loop:

1000 LDX #8$0
1002 INX

1003 BEQ $100A
1005 JMP $1002
1008 BRK

1009 BRK

100A BRK

When jumping forward, you often do not yet know the
precise address you want to branch to. In the example above,
we really wanted to go to $1008 when the loop was finished
(when X was equal to zero), but we just entered an approxi-
mate address ($100A) and made a note of the place where this
guess appeared ($1004). Then, using the direct memory
changing function in the monitor, we can change location
$1004 to the correct offset when we know what it should be.

Forward counting is easy. When we learned that we
wanted to go to $1008, we would change the number $5 in
address $1004 to $3.

Remember that you start counting from zero from the ad-
dress immediately following the branch instruction. For ex-
ample, a jump to $1008 would be three because you count
$1005=0, $1006=1, $1007=2, $1008=3. All this confusion
disappears after writing a few programs and practicing with
estimated branch addresses. Luckily, the assembler does all
the backward branches. That’s lucky because they are much
harder to calculate.

Unknown Forward Branches

If you are using LADS, all branches are given names rather
than addresses. These names are called labels, and they are
automatically calculated for you by the assembler. You would
write the above example with LADS in this way:
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LDX #0
COUNTUP INX
BEQ MORETHINGS ;or any other label you want
to give it
JMP COUNTUP ;jumps also have labels as
their targets
MORETHINGS BRK

With LADS and other advanced assemblers, you'll gen-
erally want to use labels instead of actual addresses. This
makes things pretty easy on the programmer. LADS does
much of the busywork for you, particularly if you make good
use of its pseudo-ops. By the way, pseudo-ops are essentially
instructions directly to the assembler, such as “please insert
the following as pure ASCII text,” but which are not normal
8502 instructions that get translated into ML object code. In-
stead, a pseudo-op is a request to the assembler program to
perform some extra service for the programmer. We'll go into
them in detail later.

Absolute,X and Absolute,Y
Another important mode provides you with an easy way to
access lists or tables. This method looks like absolute address-
ing, but you attach an X or a Y to the address. The X and Y
stand for the X and Y registers, which are being used in this
technique as offsets. That is, if the X register contains the num-
ber 3, then whatever address you type in will have 3 added to
it. If X holds a 3 and you type LDA $1000,X, you will LoaD
Accumulator with the value (number) which is in memory cell
$1003. The register value is added to the absolute address.
Another addressing method called zero page,X works the
same way: LDA $05,X. (Load from cell 5 plus whatever’s in
the X register.) These indexed addressing modes let you easily
transfer or search through messages, lists, or tables. Error mes-
sages can be sent to the screen using such a method. Assume
that you set it up so that the words SYNTAX ERROR are held
in some part of memory because you sometimes need to send
them to the screen from your program. You might have a
whole table of such messages. But we’ll say that the words
SYNTAX ERROR are stored at address $3000. Your screen
memory address is 1024 ($0400 hex); here’s how you would
send the message:
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1000 LDX #$00 Set the counter register to zero.

1002 LOOP LDA $3000,X Get a letter at 3000 + X.

1005 BEQ QUIT If the letter is a zero, we’ve reached
the end of the message, so we
branch to the end of this routine.

1007 STA $0400,X Send the letter to 0400 + X.

100A INX Increment the counter so that the
next letter in the message as well as
the next screen position are pointed
to.

100B JMP LOOP Jump to the load instruction to fetch
the next character.

1010 QUIT BRK Task completed, message transferred.

This sort of indexed looping is an extremely common ML
programming device. It can be used to create delays (FOR T = 1
TO 5000: NEXT T), to transfer any chunk of memory to an-
other place, to check the status of memory (to see, for ex-
ample, if a particular word appeared somewhere on the
screen), and to perform many other tasks. It is a fundamental,
all-purpose machine language technique.

Here's a fast way to fill your screen or any other area of
memory. This is a full source code for the demonstration
screen-fill example we tried in Chapter 1. See if you can fol-
low how this indexed addressing works. What bytes are filled
in and when? At ML speeds, it isn’t necessary to fill them in
order—nobody would see an irregular filling pattern because,
like magic, it all happens too fast for the eye to see (see Pro-
gram 4-2).

Program 4-2. Filling the Screen with the letter 4

19 *= $BOO

20 .0

30 .S

40 A = $01; SCREEN CODE FOR "A"
50 ;

60 LDY #0; SET COUNTER TO ZERO
70 LDA #A

80 STA $0409,Y
99 STA $0504,Y
194 STA $0600,Y
114 STA $Y7¢9,Y

120 INY; RAISE COUNTER BY 1
139 BNE LOOP; IF Y IS NOT YET ZERO, KEEP GOING
140 RTS
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Compare this with the program on page xii to see the ef-
fects of using a different screen starting address and how
source code is a more elaborate version of what you get when
you run the monitor’s disassembler to get an ML program
listing.

Indirect Y

This addressing mode is a real workhorse; you'll use it often.
Several of the examples in this book refer to it and explain it
in context. The argument you use with this mode isn’t so
much an address in itself as a method of creating an address. It
looks like this:

4000 STA ($80),Y

Seems innocent enough. That Y works like the other
kinds of index modes we’ve discussed before. Whatever is in
the Y register is added to the final address.

But watch out for those parentheses. They mean that $80
is not the real address here. We're not going to put the byte in
the accumulator into address $80 plus the value of Y. Instead,
addresses $80 and $81 are themselves holding the address we
are sending our byte to. We are not sending to $0080; hence,
the name for this mode is indirect Y.

Where does the byte in the accumulator end up? It de-
pends what address you've stored in bytes $80 and $81. If $80
and $81 have these numbers in them:

$0080 01
$0081 20

and Y is holding a 5, then the byte in A will end up in ad-
dress $2006. How did we get $2006?

First, you've got to mentally swap the numbers in $80
and $81. The 8502 requires that address pointers be listed in
backward order: The pointer is holding $2001, not $0120.
Then, you've got to add the value in the Y register, 5, and you
get $2006.

This is a valuable tool, even if it’s perplexing at first. You
should familiarize yourself with it. It lets you get easy access
to many memory locations very quickly by just changing the Y
register (using INY or DEY) or by directly changing the ad-
dress pointer itself (using INC or DEC, instructions that raise
or lower a byte in RAM memory by one). You can make rad-
ical shifts with this pointer-changing technique. You can shift
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up a whole page (256 bytes) by simply INC $81: That will
change your target address from $2001 to $2101. To go down
four pages, subtract four from address $81. Combine this with
the indexing that the Y register is doing for you, and you've
got greater efficiency, greater reach to all the RAM you want
to manipulate.

Right now you're paying the only price you'll ever pay for
this valuable tool: It’s possibly the most perplexing thing
when you're learning ML. You've got to try it a few times,
scratch your head, and get the concept.

Let’s clear away some of the fog. How were those bytes at
$80 and $81 selected to be the ones holding our indirect ad-
dress? The programmer decides where address pointers are
stashed (they must be in zero page). You figure out where the
safe places are in zero page, and you use them for your point-
ers. That’s the main use that you'll have for zero page.
Remember that the creators of the 128 set aside zero page
bytes $FA through $FE for our use. The 128 leaves them
alone, so there’s room for two of your indirect Y pointers in
that safe area.

How did the numbers $20 and $01 get into the pointer in
the example above? The programmer put them there. As part
of the initial activities of an ML program, you stick byte-pairs
(these address pointers) into zero page. If you're using a sim-
ple assembler, you'll need to keep a record of the pointers on
paper. If you're using LADS, you give the pointers labels like
this:

SCREENPOINTER = $80

And you can also have a label for the actual screen address:
SCREEN = $0400
Then, to set up a pointer, you use some pseudo-ops in LADS

which break a two-byte address like $0400 into halves for
storage in pointers:

LDA #<SCREEN; loads the low byte
STA SCREENPOINTER
LDA #>SCREEN; loads the high byte

STA SCREENPOINTER+1; stores into address SCREENPOINTER
plus 1 ($81)

When an address is set up in a pointer, it’s split in half.
The address $0400 was split in the example above. When
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programming in ML, it’s useful to distinguish between the two
halves by saying that one of the bytes is the LSB (least signifi-
cant byte) and the other is the MSB (most significant byte). In
our example, the $00 is the LSB, and the $04 is the MSB.
That’s not because one number is smaller than the other;
rather, it's because they are in different positions in the two-
byte address. The position on the left is of far more signifi-
cance than the position on the right in $0400. It’s the same for
decimal numbers: 5015 when chopped in half means that the
left half stands for fifty 100’s and the right half only stands for
fifteen 1’s. Clearly the right position is the less significant.
Note that every time you add one to the MSB of a double-
byte hex number in ML, you are adding one page, 256. This is
how you can INC or DEC the MSB of your pointer and move
quickly through the “pages” of memory. And, remember, you
store pointers in reverse order when you are setting up a
pointer, LSB, MSB:
0080 00
0081 04; a pointer to the screen memory of the 128

Indirect X

This addressing mode is rarely used. It makes it possible to set
up a group of pointers, a cluster of them, in zero page. It's like
indirect Y, except the X register value is not added to the ad-
dress pointer to form the ultimate address target. Rather, X
points to the pointer you desire to use. Nothing is added to the
address held in the pointer. It looks like this:

5000 STA ($90,X)

To see it in action, let’s assume that you've already set up
a cluster of pointers in zero page. It’s a table of pointers, not
just one:

0090 $00; Pointer 1
0091 $04; points to $0400
0092 $05; Pointer 2
0093 $70; points to $7005
0094 $EA; Pointer 3
0095 $81; points to $81EA

If X holds a 2 when we STA ($90,X), then the byte in the
accumulator will be sent to address $7005. If X holds a 4, the
byte will go to $81EA.
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All things considered, this addressing mode has little to
recommend it. If you set up the same table, you could access
these pointers just as easily and have the flexibility of that Y
index into the bargain. Who knows why the designers of the
8502 chip included this mode?

Accumulator Mode

ASL, LSR, ROL, and ROR shift the bits in the byte held in the
accumulator. We'll touch on this shifting in Chapter 6 when
we discuss the instruction set. This mode doesn’t really have

much to do with addressing as such, but it's always listed as a

separate mode.

Zero Page,Y

This mode can be used with only two instructions: LDX and
STX. Otherwise, it operates just like zero page, X discussed
above.

What to Remember

There you have them, 13 addressing modes to choose from.
However, there are only six that you should focus on. Try
practicing with them until you understand their uses: immedi-
ate, absolute (plus absolute,X and ,Y), zero page, and indirect
Y. The rest are either unimportant when you’re programming
because they are automatic (like the implied mode) or are not
really worth bothering with. Now that we’ve surveyed the
ways you can move numbers around, it’s time to see how to
do arithmetic in ML.
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Arithmetic

There’ll be many things that you'll want to do in ML, but
complicated math is not one of them. Mathematics beyond
simple addition, subtraction, multiplication, and division will
not be covered in this book. For games and most other ML for
personal computing, you won’t need to use complex math. In
this chapter we’ll cover what you are likely to use. BASIC is
well-suited to sophisticated mathematical programming and is
far easier to work with for such tasks. If you're planning a
program that’s going to involve trigonometry or quadratic
equations, use BASIC.

But before we look at ML arithmetic, let’s briefly review
an important concept: how the computer tells the difference
between addresses, numbers as such, and instructions. It is
valuable to be able to visualize what the computer is going to
do as it comes upon each byte in your ML routine.

Even when a computer appears to be working with
words, letters of the alphabet, graphics symbols, and the like,
it is still working with numbers. A computer works only with
numbers. The ASCII code is a convention by which a com-
puter understands that when the context is alphabetic, the
number 65 means the letter A. At first this is confusing. How
does it know when 65 is A and when it is just 65? And there’s
a third possibility: The 65 could represent the cell 65 in the
computer’s memory, the sixty-fifth address.

It is worth remembering that, like us, the computer means
different things at different times when it uses a symbol (like
65). We can mean a street address by it, a temperature, or a
code. We could agree that whenever we used the symbol 65,
we were ready to leave the party. We would look meaning-
fully at our companion and say, “Everyone expects to retire at
sixty-five.” Then hope they get the hint and remember the
code.

The point is that symbols aren’t anything in themselves.
They stand for other things, and what they stand for must be
agreed upon in advance. There must be rules. A code is an
agreement in advance that one thing symbolizes another.
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The Computer’s Rules

Inside your machine, at the most basic level, there is a stream
of input. The stream flows continually past a “gate’ like a
river through a canal. For 99 percent of the time, the 128 sees
a continuous stream of 88'’s.

When you first turn it on, the computer just sits there.
What's it doing? It will be updating its clock, and it’s
holding things coherent on the TV screen—but it mainly waits
in an endless loop for you to press a key on your keyboard to

let it know what it’s supposed to do.

There is a memory cell inside your 128 which the com-
puter constantly checks. This byte in the 128 is located at $D4.
While no key is pressed, $D4 holds the number 88. When a
key is hit on the keyboard, however, a different number ap-
pears in $D4, a number unique to the key pressed called its
keyboard matrix code. This isn’t the same as the ASCII code
that you use to print to the screen. However, you can use this
matrix code to make branches and decisions just as well as
any other code. For example, anything other than 88 in $D4
signals that someone is typing something on the keyboard. If
the RETURN key is pressed, a 1 will appear in location $D4.
Finally, after centuries (the computer’s sense of time differs
from ours) here is something to work with. Something has
come up to the gate at last.

But assume that someone hits the RETURN key, and a 1
appears in location $D4. You notice the effect at once—every-
thing on the screen moves up one line, because 1 (in the key-
board matrix code) stands for a carriage return. How did the
128 know that you were not intending to type the number 1
when it saw 1 in the keyboard sampling cell? Simple. The
number 1, and any other keyboard input, is always read from
$D4 as a keyboard matrix code number. Besides, there’s a dif-
ference between the number 1 and the ASCII or matrix codes
for the character 1.

Let’s look at this a slightly different way. Say that some-
one typed in the number 141 on they keyboard. The matrix
code for each of those three characters 1, 4, and 1 would ap-
pear, in turn, in cell $D4 for as long as each key was being
pressed. But, in the matrix code or ASCII, the digits from 0
through 9 are the only number symbols. There is no single
symbol for the three characters 1 4 1. So, when you type in a
1 followed immediately by a 4 and then another 1, the
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computer’s input-from-keyboard routine notices that you have
not pressed one of the “instant action’ keys (such as the ESC,
TAB, or cursor-control keys). Rather, you typed 1 and 4 and
another 1—the keyboard sampling cell, the “which key
pressed’ location in zero page at $D4, received the matrix
code for 1, and then for 4, and finally another 1. And, in be-
tween each of these codes, it received 88 showing that the hu-
man, operating at slow human speeds, was not pressing any
keys for a time.

The point is that hitting the key labeled 1 followed by the
key labeled 4 followed by another 1 is not storing those num-
bers into that sampling cell at $D4. Instead, these keypresses
are stored as characters. On the ML level, numbers are distinct
from characters. A character like 3 has an ASCII and matrix
code value which differs from its numeric value. In other
words, typing 1 4 1 will not result in the computer seeing a 1,
a 4, and a 1. Type in this little BASIC program to see what’s
happening in $D4:

10 PRINT PEEK(212);:GOTO 10

and then type on the keyboard. Each key has a different ma-
trix value. What happens when you SHIFT or ESC a key?

Incidentally, 128’s ASCII code representations (as distinct
from the matrix code) of the digits are easy to remember in
hex: 0 is $30, 1 is $31, ... up to $39 for 9. In decimal, the dig-
its would be 48 through 57. The matrix code follows no
particular pattern.

The point of all this is that the computer decides the
“meaning” of the numbers which flow into and through it by
each number’s context. If it is in “alphabetic’”” mode, the com-
puter will see the number 65 as A; or if it has just received an
A, it might see a subsequent number 65 as an address to store
the A. It all depends on the events that surround a given num-
ber. We can illustrate this with a simple example:

2000 LDA #$C1 $A9 (169) $C1 (193)
2002 STA $C1  $85 (133) $C1 (193)

This short ML program (the numbers in parentheses are
the decimal values) shows how the computer can “expect” dif-
ferent meanings from the number 193 ($C1 hex). When it re-
ceives an instruction to perform an action, it is then prepared
to act upon a number. The instruction comes first and, since it
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is the first thing the computer sees when it starts a job, it
knows that the number $A9 (169) is not a number.

It has to be one of the ML instructions from its set of
instructions (see Appendix A).

Instructions and Their Arguments

The computer would no more think of this first 169 as the
number 169 than you would seal an envelope before the letter
was inside. If you are sending out a pile of Christmas cards,
you perform instruction-argument just the way the computer
does: You (1) fill the envelope (instruction) (2) with a card
(argument, or operand). You don't get the envelopes confused
with the cards and try to stuff an envelope into a card.

All actions do something to something. A computer’s ac-
tion is called an instruction (or, in its numeric form as part of
an ML program inside the computer’s memory, it’s called an
opcode for operation code). The target of the action is called its
argument, or operand. In our program above, the computer
must LoaD Accumulator with 193. The # symbol means im-
mediate; the target is right there in the next memory cell
following the LDA instruction, so it isn’t supposed to be
fetched from a distant memory cell. That 193, however, is not
another instruction; it’s the number 193.

Then, after this action has been completed, after the accu-
mulator contains the number 193, the next number (the 133
which means STore Accumulator in zero page, the first 256
cells) must be an instruction, the start of another complete ac-
tion. And, once again, the computer knows that the instruction
133 must be followed by an address of a cell in memory to
store to. So, in the example, we’ve got a total of four numbers:
169, 193, 133, and 193. If you PEEKed at this little ML rou-
tine, you'd find these numbers in this order. But when this ML
program is run, is executed by the 8502, it will see 169 as an
instruction, 193 as a number, 133 as another instruction, and
the 193 following that instruction as an address in memory.
Instructions, numbers, addresses—they are all mixed in to-
gether, but the chip can figure out which is which based upon
their context. It knows that LDA # will be followed by a sin-
gle-byte number because that’s what LDA in the immediate
addressing mode demands. The computer would no more ex-
pect an address to come after LDA # than you would expect
someone to say ‘1700 Taylor Street” when you asked what
time it was.
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Think of the computer as completing each action and then
looking for another instruction. It moves through your list of
instructions logically. Recall from the last chapter that the tar-
get can be “implied” in the sense that INX simply increases
the X register by one. The one is “implied” by the instruction
itself, so there is no target argument in these cases. The next
cell in this case must also contain an instruction for a new
instruction-argument cycle.

Some instructions call for a single-byte argument. LDA
#193 is of this type. You cannot LoaD Accumulator with any-
thing greater than 255. The accumulator is only one byte
large, so anything that can be loaded into it can also be only a
single byte large. (Recall that 255, $FF, is the largest number
that can be represented by a single byte.)

STA $C1 also has a one-byte argument because the target
address for the STore Accumulator is, in this case, in zero
page.

Storing to zero page or loading from it will need only a
one-byte argument—the address. Zero page addressing is a
special case, but an assembler program will take care of it for
you. It will pick the correct opcode for this addressing mode
when you type LDA $C1. Typing in LDA $00C1 would create
ML code that performs the same operation, though it would
use three bytes instead of two to do it.

But how does the chip know that a given instruction is
self-contained like the INY, implied addressing mode? Or an-
other instruction uses up two bytes like zero page addressing
(STA $15 uses one byte for the STA command and one byte
for the $15)? Or the biggest addressing modes, like STA
$1500, absolute addressing, take three bytes before they can
look for the next instruction in a program?

Inside the chip is a program counter (PC). It has a list of all
the ML instructions. And it knows how many bytes—one,
two, or three—that each instruction takes up. During an ML
program’s execution, the program counter acts like a finger
that keeps track of where the computer is located at any given
time in its trip up the series of ML instructions that comprise
your program. Each instruction takes up one, two, or three
bytes, depending on what type of addressing is going on. The
program counter looks at its list and moves up the appropriate
number of bytes to show where the next instruction will be.
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Context Defines Meaning

TXA uses only one byte, so the program counter moves ahead
one byte and stops and waits until the value in the X register
is moved over into the accumulator. TXA is supposed to trans-
fer into the accumulator whatever number is in the X register.
Then the computer asks the PC, “Where are we?”” and the PC
is pointing to the address of the next instruction. The PC
never points to an argument. It skips over them because it
knows how many bytes each addressing mode uses up in a
program.

Say that the next instruction after TXA is LDA $15. This
is a two-byte-long, zero page addressing mode. The PC looks
on its list and moves up two bytes. The longest possible
instruction would use three bytes, such as LDA $5000 (ab-
solute addressing). The PC counts up three and points. Your
assembler would translate LDA $15 into $A5 and POKE it. It
would translate LDA $1500 into $AD and POKE that. Since
the opcodes that get POKEd are different, even though the
LDA mnemonics are identical, the computer can know how
many bytes a given instruction will use up. That's how it
knows where the next instruction must be in your program.

Having reviewed the way that your computer makes
contextual sense out of the mass of seemingly similar numbers
of which an ML program is composed, we can now move on
to see how elementary arithmetic is performed in ML.

Addition

Arithmetic is performed in the accumulator. The accumulator
holds the first number, the target address holds the second
number (but is not affected by the activities), and the result is
left in the accumulator. So,

LDA #$40 Remember, the # means immediate, the $ means hex.
ADC #$01

will result in the number $41 being left in the accumulator.
We could then STA that number wherever we wanted. Simple
enough.

The ADC means ADd with Carry. If an addition results in
a number higher than 256 (if we added, say, 250 + 7), then
there would have to be a way to show that the number left
behind in the accumulator isn’t the correct result—that what’s
in the accumulator isn’t the total, it’s the carry.
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After adding 250 + 7, you would find a 1 in the accu-
mulator, and the carry flag would be up.

That means that you must add 256 to whatever is in the
accumulator to find the real answer: 257.

To make sure that things never get confused, always CLC
(CLear the Carry flag) before you do any addition. CLC will push
the carry flag down (in case it was up from some previous
event in your program). Then, if you find that it is up after the
addition (ADC), you'll know that you need to add 256 to
whatever is in the accumulator. You'll know that the accu-
mulator is holding the carry, not the total result.

One other point about the status register: There is another
flag, the decimal flag. If you ever set this flag up (with the
SED, SEt Decimal instruction), all addition and subtraction is
performed in a decimal mode in which the carry flag is set
whenever an addition exceeds 99. In this book, we are not go-
ing into the decimal mode at all. Decimal mode has little value
in ML programming. It’s another one of those things that
sounds good, but doesn’t do much in practice.

Adding Numbers Larger Than 255

We have already discussed the idea of setting aside some
memory cells as a table for data. To do this, we simply make a
note to ourselves that, say, addresses $D6 and $D7 are de-
clared a zone for our personal use as a storage area. Using a
typical example, let’s think of this two-byte zone as the place
that holds the address of a “moving finger”” going through a
list of names we’ve stored in RAM. As long as the zone is not
in ROM or used by our program elsewiiere or used by the
computer (see the memory map in Appendix C or use the safe
areas like $FA-$FE we discussed earlier), it’s fine to declare an
area a data zone. It is a good idea (especially with longer pro-
grams) to make notes on a piece of paper to show where you
intend to have your subroutines, your main loop, your
initialization, and your miscellaneous data—names, messages
for the screen, input from the keyboard, and so on. This is one
of those things that BASIC does for you automatically, but
which you must do for yourself in ML. However, you can set
up data zones with the LADS assembler by using the .BYTE,
=, or *= pseudo-ops. It's generally a good idea to put mes-
sage tables, and so forth, at the very end of your program.
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When BASIC creates a string variable, it sets aside an area
to store variables. This is what DIM does. In ML, you set aside
your own areas by simply finding a clear memory space and
not writing a part of your program into it (or by staking out
some memory with .BYTE or *= in LADS). Part of your data
zone can be special registers you declare to hold the results of
addition or subtraction.

But back to our example: You might make a note to your-
self that after finding these zero page locations safe to use,
$D6 and $D7 will hold the current position within a list of
names in your database. This is a pointer, and we can look at
all the bytes within our database by adjusting this pointer in
$D6 and $D7. In this way we can efficiently search through
the database.

Since the “moving finger” searching through the database
is constantly in motion, this pointer will be changing all the
time as it looks for your target information. Notice that you
need two bytes for this pointer. That is because one byte could
hold only a number from 0 through 255. Two bytes together,
though, can hold a number up to 65535 (all the possible ad-
dresses in the 128 without bank switching).

To define the pointer location, you could do this in LADS:

FINGER = $D6

If you needed another two-byte pointer to hold another ad-
dress, you could write this:

OTHER = $EB

and so on, using safe areas, for as many pointers as you
needed.

Since your 128 can address only a total of 65536 memory
cells with any single instruction, two-byte registers like these
can address any addressable cell in your current bank. So if
your “moving finger” is supposed to look up the name
“Mitchell, Nancy” in the database, you'll want to start off by
looking for the letter M. In setting up your list of names, you
decided that each entry, each record, would be given 40 bytes
of space. Thus, you are going to be adding 40 to the FINGER
if the first character in the first record isn’t an M. Let’s say that
the list of records starts in memory at address $8000.

Before accessing the list, we punch in the target address:

LDA #0:STA $D6:LDA #$80:STA $D7
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Or you could accomplish the same thing with the LADS
assembler by using labels and the #> and #< pseudo-ops
which extract the MSB and LSB of a label’s address:

LDA #<DATA:STA FINGER:LDA #>DATA:STA FINGER+1.

The FINGER address register now looks like this in the
monitor: $00D6 00 80 (remember that the higher, most signifi-
cant byte, comes after the LSB, the least significant byte). To
move to the next name in the list, we want FINGER to be
$00D6 28 80. (The 28 is hex for 40.) In other words, we're go-
ing to move the finger up one record in the database list. To
do this, we need to add $28 (40 decimal) to the pointer, the
FINGER.

Remember the indirect Y addressing mode which lets us
use an address in zero page as a pointer to another address in
memory? The number in the Y register is added to whatever
address sits in $D6 and $D7, so we don’t STA to $D6 or $D7,
but rather to the address that they contain: STA ($D6),Y.

How to add $28 to the FINGER pointer? First of all, CLC
(CLear the Carry) to be sure that flag is down. This example is
written for the mini-assembler in the monitor:

1000 CLC $1000 is the location of our “add 40 to FINGER”
subroutine.

1001 LDA $D6 We fetch the LSB of FINGER.

1003 ADC #$28 Add 40.

1006 STA $D6 Put the new result into FINGER.

1008 LDA $D7 Get the MSB of FINGER.

100A ADC #$00 Add with carry to the MSB of FINGER.

1010 STA $D7 Update FINGER’S MSB.

That’s it. Any carry will automatically set the carry flag up
during the ADC action on the LSB and will be added into the
result when we ADC to the MSB. It’s all quite similar to the
way that we add numbers, putting a carry onto the next col-
umn when we get more than a ten in the first column. And
this carrying is why we always CLC (clear the carry flag; put it
down) just before additions. If the carry is set, we could get
the wrong answer if our problem did not result in a carry. Did
the addition above cause a carry? (Remember, we started with
a value of $8000 in FINGER.)

Note that we need not check for any carries during the
MSB+MSB addition. Any carries resulting in a database ad-
dress greater than $FFFF (65535) would be impossible on our
machines.
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The 8502 is permitted to address $FFFF tops, under nor-
mal conditions. However, it is possible to add numbers larger
than 65535 by simply using more than two bytes and continu-
ing to add with carry across a multibyte chain.

The example above would be somewhat easier with
LADS because you would substitute label names (FINGER and
DATA, in this case) for the numbers. Also, you could define
another label to hold the size of a record (RECORD = 40),
and then line 1003 would read ADC #RECORD.

Subtraction

As you might expect, subtracting single-byte numbers is a
snap:

LDA #$41

SBC #$01

results in a $40 being left in the accumulator. As before,
though, it’s important to make it a habit to deal with the carry
flag before each calculation. When subtracting, however, you
set the carry flag: SEC. Why is unimportant. Just always SEC
before any subtractions, and your answers will be correct.
Here’s double subtracting that will move the FINGER back
down one record in the data list:

$1020 SEC $1020 is where we arbitrarily decided to locate
our “take 40 from FINGER" subroutine.
1021 LDA $D6 Get the LSB of FINGER.
1023 SBC #$28 LSB of the size of a single record.
1026 STA $D6 Put the new result into FINGER.
1028 LDA $D7 Get FINGER’s MSB.
102A SBC #$00 Subtract the MSB of the size of a single record.
102D STA $D7 Update FINGER’s MSB.

Multiplication and Division

Multiplying could be done by repeated adding. To multiply 5
X 4, you could justadd 4 + 4 + 4 + 4 + 4. One way would
be to set up two registers like the ones we’ve used before.
Both registers (or storage zones) could contain a 4, and then
you could loop through an add-these-two-registers subroutine
five times. For practical purposes, however, multiplying and
dividing are more easily accomplished in BASIC. They are
simply not worth the trouble of setting up in ML, especially if
you need to involve decimal-point fractions (floating-point
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arithmetic). Perhaps surprisingly, for games and most personal
computing tasks where ML routines and programs are created,
there is little use either for negative numbers or arithmetic be-
yond simple addition and subtraction. When we get into di-
vision and multiplication, we’ve gone beyond the simple
arithmetic that you'll need—unless you're writing an account-
ing program or a spreadsheet program.

If you find that you do need complicated mathematical
structures, create the program in BASIC, adding ML where su-
per speeds are desirable. Such hybrid programs are efficient
and, in their way, elegant.

One final note: An easy way to divide the number in the
accumulator by two is to LSR. Try it. Similarly, you can mul-
tiply by two with ASL. We'll define LSR and ASL in the next
chapter. If you're interested in using these techniques, take a
look at the “Library of Subroutines” (Appendix E).

Double Comparison

One rather tricky technique is used fairly often in ML and
should be learned. It is tricky because two of the B branching
instructions seem to be worth using in this context, but are
best avoided for this kind of comparing. If you're trying to
keep track of the location of a record within a database, this
will be a two-byte address. If you need to compare those two
bytes against another two-byte address, you'll need a “double-
compare” subroutine. You might, for example, want to check
whether or not one record is located higher in the database
than another.

Double-compare is also useful in any other ML where you
need to manipulate numbers larger than can be held in one
byte (where the single CMP instruction would be able to com-
pare them for you).

The problem is the BPL instruction (Branch on PLus) and
its companion, BMI (Branch on MInus). Don’t use them for
comparisons. In any comparisons, whether single- or double-
byte, use BEQ to test if two numbers are equal, BNE for not
equal, BCS for equal or higher, and BCC for lower. You can
remember BCS because its S is higher and BCC because its C is
lower in the alphabet. Program 5-1 shows one easy way to
perform a double-compare.
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Program 5-1. Double-Compare

10 *= $BOO

20 .s

30 .0

40 START SEC

50 LDA TESTED; COMPARE THE LOW BYTES
60 SBC SECOND

70 STA TEMP

80 LDA TESTED+1; COMPARE THE HIGH BYTES
9@ SBC SECOND+1

100 ORA TEMP

114 BEQ EQUAL: TESTED = SECOND

120 BCC LOWER; TESTED < SECOND

130 BCS HIGHER:; TESTED > SECOND

149 ;

150 ;==-=-——=———= LANDING PLACES —--—===-----

160 LOWER BRK

179 EQUAL BRK

180 HIGHER BRK

400 ;-=--=---—-—-= STORAGE AREA —-—==—========-
500 TEMP .BYTE 0

600 SECOND .BYTE @ 0

708 TESTED .BYTE 0 @

716 .END 5-1

This is LADS at work. Recall that with assemblers like
LADS, you can use line numbers and labels, add numbers to
labels (see the TESTED + 1 in line 80), add comments, and
all the rest.

To try out this double comparison, type in the source
code in Program 5-1. Then assemble it with LADS. Now go
into the monitor with F8, and type D $B00 to see the results
of your assembly. Notice the eight zeros at the end of the little
program. You can then try putting different numbers into
TESTED and SECOND and reassemble (or just insert them in
the monitor using the > monitor memory change command).

Notice that the numbers being compared are not really
interchangeable. One is the “tested”” number, and the other is
the number it is being tested against, the one we're calling
SECOND in our label scheme here. As you can see, you've
got to keep it straight in your mind which number is being
tested, or the results won’t make much sense.

When you’ve set up two double-byte numbers in the reg-
isters (TESTED and SECOND), you can run this routine from
within the monitor by typing G B00. All that will happen is
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that you will land on a BRK instruction and halt further activ-
ity. Where you land tells you the results of the comparison. If
the numbers are equal, you land at EQUAL’s address. If the
tested number is less than the second number, you'll end up
in the location of LOWER, and so forth. (The monitor will
give a PC number which is two bytes above the actual BRK
instruction, so take that into account.)

You could test using only a BNE if all you needed to
know is whether or not the two numbers are equal. You could
leave out some of these branch tests if you're not interested in
them. Play around with this until you’ve understood the ideas
involved.

In a real program, you would be branching to addresses
in your ML program which do something if the numbers under
comparison are equal or one is greater or whatever. This ex-
ample sends the computer to LOWER, EQUAL, or HIGHER,
where it comes to an abrupt halt just to let you see the effects
of a double-compare subroutine, but in a real program EQUAL
would be the start of a subroutine which accomplished some-
thing based on the discovery of equality. Above all, remember
that you should use BCC and BCS (not BPL or BMI) when
comparing in ML.

Some might wonder why we use CMP to test the low
bytes and then switch to SBC to test the high bytes. It’s just a
convenience. CoMPare is a subtraction of one number from
another. The only difference between CMP and SBC, really, is
that subtraction replaces the number in the accumulator with
the result. LDA #5:SBC #2 will leave 3 in the accumulator.
Using LDA #5:CMP #2 leaves the 5 in the accumulator, and
all that happens is that flags are affected. Both SBC and CMP
have an effect on the zero, negative, and carry flags. In our
double-compare we don’t care if there is a result left in the
accumulator or not. So, we can use either SBC or CMP. The
reason for starting off with CMP, however, is that we don’t
have to SEC (set the carry flag) as we always need to do
before an SBC.
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The Instruction Set

There are 56 instructions (commands) available in 8502 ma-
chine language. Most versions of BASIC have about 50 com-
mands. Some BASIC instructions are rarely used by the
majority of programmers, for example, END, SGN, TAN, USR.
Some, such as LET, contribute nothing to a program and seem
to have remained in the language for nostalgic reasons. Oth-
ers, like TAN, have uses that are highly specialized.

There are surplus commands in computer languages just
as there are surplus words in English. People don’t often say
culpability. They usually just say guilt. The message gets
across without using the entire dictionary. The simple, com-
mon words can do the job.

Machine language is the same as any other language in
this respect. There are around 20 heavily used instructions.
The 36 remaining ones are used far less often. You can switch
into the 128’s monitor with F8 and look at part of your
computer’s ROM. To look at BASIC ROM, once in the mon-
itor, type D F4000 and press RETURN. To see more, press D
and RETURN. You can now read the machine language
routines which comprise BASIC. You'll find interesting things
all the way from $4000 up to $FFFF in bank 15. You'll also
quickly discover that the accumulator is heavily trafficked
(LDA and STA appear frequently in the disassembly), but you
will have to hunt to find BVC, CLV, ROR, RTI, or SED.

ML, like BASIC, offers you many ways to accomplish the
same job. Some programming solutions, of course, are better
than others, but the main thing is to get the job done. An in-
fluence still lingers from the early days of computing when
memory space was rare and expensive. This influence—that
you should try to write programs using up as little memory as
possible—can be safely ignored. Efficient memory use will
often be at the bottom of your list of objectives when program-
ming ML. It could hardly matter whether you use 25 instead
of 15 bytes to print a message to the screen when your com-
puter has space for programming which exceeds 130,000 bytes.

Rather than memorize each ML instruction individually,
we will concentrate on the workhorses. Bizarre or arcane
instructions will get only passing mention. Unless you are
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planning to use ML programs to interface to strange
peripherals or need to do complex mathematical calculations
and such, you will be able to write excellent machine language
programs for nearly any application with the instructions we’ll
focus on in this book.

For each instruction group, we will describe three things
before getting down to the details about programming with
them: (1) what the instructions accomplish, (2) the addressing
modes you can use with them, and (3) what they do, if any-
thing, to the flags in the status register. A condensed, reference
version of this information is also found in Appendix A.

The Six Instruction Groups

The best way to approach the instruction set might be to break
it down into the following six categories which group the
instructions according to their functions:

1. Transporters

2. Arithmetic Group

3. Decision Makers

4. Loop Group

5. Subroutine and Jump Group
6. Debuggers

We will deal with each group in order, pointing out
similarities to BASIC and describing the major uses for each.

As always, the best way to learn is by doing. Move bytes
around. Use each instruction, typing a BRK as the final
instruction to see the effects. If you LDA #65, look in the A
register to see what happened. Then, STA $12 and check to
see what was copied into address $12. If you send the byte in
the accumulator (STA), what is left behind in the accumulator?
Is it better to think of bytes being copied rather than being
sent?

Play with each instruction to get a feel for it. Discover the
effects, qualities, and limitations of these ML commands.
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1. The Transporters:
LDA, LDX, LDY
STA, STX, STY

TAX, TAY
TXA, TYA

These instructions move a byte from one place in memory to
another. To be more precise, they copy whatever value is in a
source location into a target location. The source location still
contains the byte, but after a “transporter”” instruction, a copy
of the byte is also in the target location. This does replace
whatever used to be in the target.

All of them affect the N and Z flags, except STA, STX,
and STY which do nothing to any flag.

There are a variety of addressing modes available to dif-
ferent instructions in this group. Check the chart in Appendix
A for specifics.

Remember that the computer does things one at a time.
Unlike the human brain which can carry out a thousand dif-
ferent instructions simultaneously (walk, talk, and smile, all at
once), the computer goes from one tiny job to the next. It

‘works through a series of instructions, raising the program

counter (PC) each time it handles an instruction.

If you do a TYA, the PC goes up by one to the next ad-
dress, and the computer looks at that next instruction. STA
$80 is a two-byte-long instruction; it's zero page addressing,
so PC=PC+2. STA $8600 is a three-byte-long absolute
addressing mode, and PC=PC+3 automatically.

Recall that there’s nothing larger than a three-byte in-
crement of the PC. However, in each case, the PC is cranked
up the right amount to make it point to the address for the
next instruction. Things would quickly get out of control if the
PC pointed to some argument (some address) thinking it was
an instruction. It would be incorrect (and soon disastrous) if
the PC pointed to the $15 in LDA $15.

If you type SYS 15000 from BASIC, the program counter
is loaded with 15000, and the computer transfers control to
the ML instructions which are (we hope) sitting at address
15000 (decimal) on up. It will then look at byte 15000 (deci-
mal), expecting it to be an instruction. Since the computer
does all this very fast, it can seem to be keeping score, bounc-
ing the ball, moving the paddle, and everything else—simulta-
neously. It’s not, though. It's flashing from one task to another
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and doing it so fast that it creates the illusion of simultaneity
much the way that 24 still pictures per second look like mo-
tion in movies.

The Programmer’s Time Warp

Movies are, of course, lots of still pictures flipping by in rapid
succession. Computer programs are composed of lots of in-
dividual instructions performed in rapid succession.

Grasping this sequential, step-by-step activity makes our
programming job easier: We can think of large programs as
single steps, coordinated into meaningful, harmonious actions.
Now the computer will put a blank over the ball at the ball’s
current address, then adjust the ball address to move it
slightly downward on the screen, then print the ball character
to the new address. The main single-step action is moving
information, as single-byte numbers, from here to there, in
memory. We are always creating, updating, modifying, mov-
ing, and destroying single-byte variables. The moving is gen-
erally done from one double-byte address to another. But it all
looks smooth to the player during a game.

Programming in ML can pull you into an eerie time warp.
You might spend several hours constructing a program which
executes in seconds. You are putting together instructions
which will later be read and acted upon by coordinated elec-
trons, moving at electron speeds. It’s as if you spent an after-
noon slowly and carefully drawing up pathways and patterns
which would later be a single bolt of lightning.

Registers

In ML there are three primary places where variables rest

briefly on their way to memory cells: the X, the Y, and the A

registers. And the A register (the accumulator) is the most fre-

quently used; X and Y are used for looping and indexing. Each
of these registers can grab a byte from anywhere in memory
or can grab the byte from the address right after its own
opcode (immediate mode addressing):

LDY $8000 Puts the number at hex address 8000 into Y, with-

. out destroying it at $8000.

LDY #65 Puts the decimal number 65 into Y. (Remember, with
the 128’s built-in monitor, you'd need to add a +
sign in front of the 65 to have the mini-assembler
consider the 65 a decimal value: LDA #+65.)

LDA and LDX Work the same.
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Be sure you understand what is happening here. LDY
$1500 does not copy the byte in the Y register into address
$1500. It's just the opposite. The number (or value, as it’s
sometimes called) in $1500 is copied into the Y register. This
is LoaD Y.

To copy a byte from X, Y, or A, use STX, STY, or STA.
For these “store-bytes” instructions, however, there is no im-
mediate addressing mode. No STA #$15. It would make no
sense to have STA #$15. That would be disruptive, for it
would modify the ML program itself. It would put the number 15
into the next cell beyond the STA instruction within the ML pro-
gram itself.

Another type of transporter moves bytes between reg-
isters—TAX, TAY, TXA, TYA. See the effect of writing the
following. Look at the registers after executing this:

1000 LDA #$65
1002 TAY
1003 TAX

The number $65 is placed into the accumulator, then
transferred to the Y register, then sent from the accumulator to
X. All the while, however, the A register (the accumulator) is
* not being emptied. Sending bytes is not a transfer in the usual
sense of the term sending. It is more as if a photocopy were
made of the number, and then the copy was sent. The original
stays behind after the copy is sent.

LDA #$15 followed by TAY would leave the $15 in the
accumulator, sending a copy of $15 into the Y register.

Notice that you cannot directly move a byte from the X to
the Y register or vice versa. There is no TXY.or TYX.

Flags Up and Down

Another effect of moving bytes around is that it sometimes
throws a flag up or down in the status register. LDA (or LDX
or LDY) will affect the N and Z, negative and zero, flags.

‘We will ignore the N flag. It changes when you used
“signed numbers,”” a special technique to allow for negative
numbers. For our purposes, the N flag will fly up and down
all the time, and we won’t care. We won't pay any attention to
it; we won't test to see where it is. If you're curious, signed
numbers are manipulated by allowing the seven bits on the
right to hold the number, the leftmost bit to stand for positive
or negative. We normally use a byte to hold values from 0
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through 255. If we were working with “signed” numbers, any-
thing higher than 127 would be considered a negative number
since the leftmost bit would be “on”’—and an LDA #255
would be thought of as —1.

This is another example of how the same thing (the num-
ber 255 in this case) can signify several different conditions,
depending on the context in which it is being interpreted.

The Z flag, on the other hand, is quite important; we can’t
ignore this flag. It shows whether or not some action during a
program run resulted in a zero. The branching instructions and
looping depend on this flag, and we’ll deal with the important
zero-result effects below with the BNE and INX instructions,
and so on.

No flags are affected by the STA, STX, or STY instruction.

The Stack Can Take Care of Itself

There are some instructions which move bytes to and from the
stack. These are for advanced ML programmers. PHA and
PLA copy a byte from A to the stack and vice versa. PHP and
PLP move the status register to and from the stack. TSX and
TXS move the stack pointer to or from the X register. Forget
them. Unless you know precisely what you are doing, you can
cause havoc with your program by fooling with the stack. The
main job for the stack is to hold the return addresses pushed
into it when you JSR (Jump to SubRoutine). Then, when you
come back from a subroutine (RTS), the computer pulls the
addresses off the stack to find out where to go back to.

For most ML programming, avoid stack manipulation un-
til you are an advanced programmer. If you manipulate the
stack without great care, you'll cause an RTS to the wrong re-
turn address, and the computer will travel far, far beyond your
control. If you are lucky, it sometimes lands on a BRK instruc-
tion and you fall into the monitor mode. The odds are that
you would get lucky roughly once every 256 times. Don't
count on it. Since BRK is rare in your BASIC ROM, the
chances are pretty low.

You could fill large amounts of RAM with “snow” by
putting zeros everywhere. This greatly improves the odds that
a crash will hit a BRK. But why bother? Play it safe when
you're writing a program.

As an aside, there is another use for snow, a blanket of
““zero page snow.”” Recall that you can safely use some loca-

96

N UUU S I

S

{

[

[

[



o

i

1

)

1

_}

]

1

Chapter 6

tions in zero page (addresses 0-255), but that your computer
and many commercial programs compete for space in zero
page because it’s such a fast place to access. If you are plan-
ning to modify, say, a commercial word processor and need to
make sure that it’s not using a particular area of zero page for
its own purposes, fill zero page with 00 (snow), put the word
processor through its paces, and then take a look at the tracks,
the nonzeros, in the snow.

2. The Arithmetic Group:
ADC, SBC, SEC, CLC
Here are the commands which add, subtract, and set or clear
the carry flag. ADC and SBC trigger the N, Z, C, and V (over-
flow) flags. CLC and SEC, needless to say, affect the C flag,
and their only addressing mode is implied.

ADC and SBC can be used in eight addressing modes: im-
mediate, absolute, zero page, (indirect,X), (indirect),Y, zero
page,X, and absolute,X and ,Y.

Arithmetic was covered in the previous chapter. To re-
view, the carry flag must be cleared with CLC before any
addition. Before any subtraction, it must be set with SEC. The
decimal mode should be cleared at the start of any program
(the initialization) with CLD. You can multiply by two with
ASL and divide by two with LSR. You can divide by four with
LSR LSR or by eight with LSR LSR LSR. You could multiply a
number by eight with ASL ASL ASL. What would this do to a
number: ASL ASL ASL ASL? To multiply by numbers which
aren’t powers of two, use addition plus multiplication. To mul-
tiply by ten, for example, copy the original number temporar-
ily to a vacant byte somewhere in memory. Then ASL ASL
ASL to multiply it by eight. Multiply the original number by
two with a single ASL. Then add them together.

If you're wondering about the V flag, it is rarely used for
anything. You can forget about the branch which depends on
it, BVC, too. Only five instructions affect it, and it relates to
twos complement arithmetic which we’ve not touched on in
this book. Like decimal mode or negative numbers, you will
be able to construct your ML programs very effectively if you
remain in complete ignorance of this mode. We have largely
avoided discussion of most of the flags in the status register: B,
D, I, N, and V. This avoidance has also removed several branch
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instructions from our consideration: BMI, BPL, BVC, and BVS.
These flags and instructions are not usually found in ML pro-
grams, and their use is confined to specialized mathematical or
interfacing applications. They will not be of use or interest to
the majority of ML programmers. The only use for BPL or BMI
which might interest you is that they can quickly detect whether
a character is shifted above 128 in value. In the lower/uppercase
character set, small a is 65, but capital A is 193. If you were
going through a list of names and the way you had arranged
to separate them was by shifting the first letter in each name,
you could quickly LDA TARGET:BMI SHIFTED to detect that
you had reached the end of a particular target name. Other-
wise, forget BPL and BMIL.

The two flags of interest to most ML programmers are the
carry flag and the zero flag. That is why, in the following sec-
tion, we will examine only the four branch instructions which
test the C and Z flags. They are likely to be the only branch-
ing instructions that you'll ever find occasion to use.

3. The Decision Makers:
BCC, BCS, BEQ, BNE, CMP

The four “branchers”” here—they all begin with a B—have
only one addressing mode. In fact, it’s an interesting mode
unique to the B instructions and created especially for them:
relative addressing. They do not address a memory location as
an absolute thing; rather, they address a location which is just
a certain distance from their position in the ML code. Put an-
other way, the argument of a B instruction is an offset which
is relative to the position of the instruction itself. You never
have to worry about relative instructions if you relocate an ML
program, if you locate the ML program in some other place in
RAM memory. The B instructions will work just as well no
matter where your ML program is moved.

That’s because their argument just says “add 5 to the
present address” or “subtract 27" or whatever argument you
give them. You do give the branchers actual addresses as you
would in absolute addressing: BEQ $3560. However, your
assembler will translate that $3560 into a different, somewhat
strange, number that is used in relative addressing. (If you are
using an advanced assembler like LADS, you will give label
names as the argument of the branchers instead of actual nu-
meric addresses.)
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The branchers cannot branch further back than 127 or further
forward than 128 bytes.

None of the brancher instructions have any effect whatso-
ever on any flags; instead, they are the instructions which look
at the flags. They are the only instructions which base their
activity on the condition of the status register and its flags.
They’re why the flags exist at all.

CMP is an exception. Many times it is the instruction that
comes just before the branchers and sets flags for them to look
at and make decisions about. Lots of instructions—LDA is
one—will set or clear (put down) flags—but sometimes you
need to use CMP to find out what’s going on with the flags.
CMP affects the N, Z, and C flags. CMP has many addressing
modes available to it: immediate, absolute, zero page,
(indirect,X), (indirect),Y, zero page, X, and absolute X and ,Y.

You might, for example, LDA NAME:CMP SECOND-
NAME to see if both names start with the same letter (you
would BEQ) or if they don’t (BNE) or if the first is higher than
the second (BCS) or lower (BCC). In all these cases, you
branch based on what the CMP did to the flags. Let’s take a
closer look at what branching does for us and how to make
the best use of it.

The Foundations of Computer Power

This decision-maker group and the following group (loops) are
the basis of our computers’ enormous strength. The decision
makers allow the computer to decide between two or more
possible courses of action. This decision is based on compari-
sons. If the ball hits a wall, then reverse its direction. In
BASIC, we use IF-THEN and ON-GOTO structures to make
decisions -and to make appropriate responses to conditions as
they arise during a program run.

Recall that the 128 uses memory-mapped video in its 40-
column mode, which means that you can treat the screen like
an area of RAM memory. You can PEEK and POKE into it to
create animation, text, or other visual events. In ML, you
PEEK by LDA SCREEN and examine what you've PEEKed
with CMP. You POKE via STA SCREEN.

CMP does comparisons. It tests the value at an address
against what is in the accumulator. Less common are CPX and
CPY.
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Assume that we have just added 40 to a register we set
aside to hold the current address-location of FINGER which
points to records in our database. We want to POKE in a new
record, but we need to locate a vacant record. We don’t want
to cover over a record that’s in use.

In practical terms, you might have deleted several records
within your database and, each time one is deleted, you just
stick a zero into the first byte of the record’s 40-byte space to
show that it's empty. Thus, we can bounce along the records,
looking at the first byte of each, to find an available empty
record.

Recall that the very useful indirect Y addressing mode al-
lows us to use an address in zero page as a pointer to another
address in memory. The number in the Y register is added to
whatever address sits in $D6,$D7; so we don’t LDA from $Dé
or $D7, but rather from the address that they contain, plus Y’s
value. :

To see what'’s in the first byte of a record, we can do the
following:

LDY #$0 We want to fetch from the first byte, so we don’t
want to add anything to it. Y is set to zero.

LDA ($D6),Y Fetch whatever is sitting there. To review indirect,Y
addressing once more, say that the address we are
fetching from here is $1077. Address $D6 would
hold the least significant byte, LSB ($77), and ad-
dress $D7 would hold the MSB ($10). Notice that
the argument of an indirect,Y instruction only men-
tions the lower address of the two-byte pointer, the
$D6. The computer knows that it has to combine
$D6 and $D7 to get the full address—and it does
this automatically.

At this point, we might come upon a $CD or some other
number which we would know indicated that this record was
not deleted. Now that this questionable number sits in the
accumulator, we will CMP it against a $0 which signals a de-
leted record. We could compare it with other numbers, too,
numbers which we—in setting up the database—had decided
would mean “old record” or “duplicated record”” or some
other housekeeping information which would help us in
managing the data. It doesn’t matter. The main thing is to
compare it and find out the condition of this particular record:
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2000 CMP #$0 Is it a zero? '

2002 BNE $200A Branch if Not Equal (if not zero) to address
$200A, which contains the first of a series of
comparisons to see if it's an “old” or “dupli-
cated”” record, or the like. On the other hand, if
the comparison worked, if it was a zero, so we
didn’t Branch Not Equal, then the next thing
that happens is the instruction in address
$2004. We “fall through” the BNE to an
instruction which jumps to the subroutine, JSR,
which moves the new record into the vacant
record space, thus jumping past the series of
comparisons for old, duplicated, and so forth.

2004 JSR $3000 Insert new record subroutine.

2007 JMP $2020 Jump over the rest of the comparisons.

200A CMP #$1 Is it an old record?

200C BNE $2014 If not, continue to next comparison.

200E JSR $3050 Perform the “old records” subroutine and...

2011 JMP $2020 jump over the rest, as before in $2007.

2014 CMP #$2  Is it a duplicated record? ... and so forth with as
many comparisons as needed.

This structure is to ML what ON-GOTO or ON-GOSUB is
to BASIC. It allows you to take multiple actions based on a

“single LDA. Doing the CMP only once would be like IF-THEN.

Other Branching Instructions

In addition to the BNE we just looked at, there are BCC, BCS,
BEQ, BMI, BPL, BVC, and BVS. Learn BCC, BCS, BEQ, and
BNE and you can safely ignore the others.

All of them are branching, if-then, instructions. They
work in the same way that BNE does. You would write BEQ
followed by the address you want to go to. If the result of the
comparison is “yes, equal-to-zero is true,” then the ML pro-
gram will jump (branch) to the address which is the argument
of the BEQ instruction. “True” here means that something
EQuals zero. One example that would send up the Z flag
(thereby triggering a branch with BEQ) is LDA #$00. The ac-
tion of loading a zero into the accumulator sets the Z flag up.

You are allowed to branch either forward or backward
from the address that holds the B instruction. However, you
cannot branch any further than 128 bytes in either direction. If
you want to go further, you must JMP (JuMP) or JSR (Jump to
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SubRoutine). For all practical purposes, you will usually be
branching to instructions located within 30 bytes of your B
instruction in either direction. You will be taking care of most
things right near where the CoMPare, or other flag-flipping
event, takes place.

If you need to use an elaborate, big subroutine which can-
not reside within 128 bytes of a branch, simply JSR to it at the
target address of your branch:

2000 LDA $65

2002 CMP $85 Is what was in address 65 equal to what was in
address 85?

2004 BNE $2009 If Not Equal, branch over the next three bytes
which perform some elaborate job.

2006 JSR $4000 At $4000 sits the elaborate subroutine to take
care of cases where addresses $65 and $85 turn
out to be equal.

2009 Continue with the program here.

If you are branching backward, you've already written
that part of your program, so you know the address to type in
after a BNE or one of the other branches. But, if you are
branching forward—to an address in part of the program not
yet written—how do you know what to give as the address to
branch to? In two-pass assemblers like LADS, you can just use
a word like BRANCHTARGET, and the assembler will pass
twice through your program when it assembles it. The first
pass simply notes that your BNE is supposed to branch to
BRANCHTARGET, but it doesn’t yet know where that is.

When it finally finds the actual address of
BRANCHTARGET, it makes a note of the correct address in a
special label table. Then, it makes a second pass through the
program and fills in (as the next byte after your BNE or what-
ever) the correct address of BRANCHTARGET.

All of this is automatic, and the labels make the program
you write (called the source code) look almost like English. In
fact, assemblers like LADS include so many special features
that they approach higher-level languages like BASIC:

2000 TESTBYTE = $80 These initial definitions of
labels...

2000 NEWBYTE = $FC are sometimes called equates.

2000 LDA #TESTBYTE

2002 CMP NEWBYTE

2004 BNE BRANCHTARGET
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2006 JSR SUBROUTINE
BRANCHTARGET 2009 ...etc.

Instead of using lots of numbers (as you do when using
the built-in mini-assembler in the monitor) for the
target/argument of each instruction, LADS allows you to de-
fine (equate) the meanings of words like testbyte and then use
the word instead of the number. And LADS does simplify the
problem of forward branching since you just give (as above)
address $2009 a name, BRANCHTARGET, and the word at
address $2005 is later replaced with $2009 when the assem-
bler does its passes.

Program 6-1 shows how the example above looks as
source code to be fed into LADS.

Actually, we should point out in passing that a $2009 will
not be the number which finally appears at address $2005 to
replace BRANCHTARGET. (Take a look at Program 6-1.) As
we mentioned, all branches are relative, an offset from the ad-
dress of the branch. The number which will finally replace
BRANCHTARGET at $2005 is, as you can see, a 3. This is
similar to the way that the value of the Y register is added to
an address in zero page during indirect Y addressing: The
number given as an argument of a branch instruction is added
to the address of the next instruction. So, $2006 + $3 =
$2009. If this seems confusing, forget about it. LADS, or even
the mini-assembler in the monitor, will take care of all this for
you. All you need to do is give $2009 as the argument to the
mini-assembler, or a label name to LADS, and they will com-
pute the three for you.

Forward Branch Solutions

There is one responsibility that you do have, though, if you
are using the monitor’s mini-assembler. When you are writing
2004 BNE $2009, how do you know to write in $2009? You
can’t yet know to exactly which address up ahead you want to
branch. There are two ways to deal with this. Perhaps easiest
is just to put in BNE $2004 (have it branch to itself). This will
result in an $FE being temporarily left as the target of your
BNE. Then, you can make a note on paper to later change the
byte at $2005 to point to the correct address, $2009. You've
got to remember to “resolve” that $FE, to POKE in the correct
offset to the target address, or you will leave a little bomb in
your program—an endless loop.
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The other, even simpler, way to deal with forward branch
addresses will come after you are familiar with which instruc-
tions use one, two, or three bytes. The BNE-JSR-TARGET
construction is common and will always be three above the
next address, an offset of three. If your branch instruction is at
$2004, you just add two to get the next address ($2006), then
count off three: $2006,7,8 and write BNE 2009.

Other, more complex branches such as ON-GOTO con-
structions will also become easy to count off when you're
familiar with the instruction byte lengths. In any case, it’s sim-
ple enough to make a note of any unsolved branches and cor-
rect them before running the program.

Of course, LADS is the easiest assembler to use for for-
ward branching: It allows you to branch to any address by just
giving the label name of that address.

Recall our previous warning about not using the infamous
BPL and BMI instructions? BPL (Branch on PLus) and BMI
(Branch on MInus) sound good, but should be avoided. To test
for less-than or more-than situations, use BCC and BCS
respectively. (Actually, the BCS test is “true” for greater-than-
or-equal-to, not just greater-than.) Remember that BCC is
alphabetically less-than BCS—an easy way to remember which
to use. The reasons for this are exotic. We don’t need to go into
them. Just be warned that BPL and BMI which sound so logi-
cal and useful are not. They can fail you, and neither one lives
up to its name. Stick with the always trustworthy BCC, BCS.

Also remember that BNE and the other three main B
group branching instructions often don’t need to have a CMP
come in front of them to affect a flag that can be tested by a
following B instruction. Many actions of many opcodes will
automatically affect flags. For example, LDA $80 will affect
the Z flag so that you can tell (using BNE or BEQ) if the num-
ber in address $80 was or wasn’t zero. LDA $80 followed by
BNE would branch away if there were anything besides a zero
in address $80. If in doubt about which flags are affected by
which instructions, check Appendix A. You'll soon get to
know the common ones. If you are really in doubt, go ahead
and stick in a CMP. It can’t do any harm.
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4. The Loop Group:
DEX, DEY, INX, INY, INC, DEC
INX and INY raise the X and Y register values by one each
time they are used. If Y is a 17 and you INY, Y becomes an
18. Likewise, DEX and DEY decrease the values in these reg-
isters by one. There is no such increment or decrement
instruction for the accumulator.

Similarly, INC and DEC will raise or lower a memory ad-
dress by one. You can give arguments to these instructions in
four addressing modes: absolute, zero page, zero page,X, and
absolute,X. These instructions affect the N and Z flags.

The loop group are generally used to set up FOR-NEXT
structures. The X register is used most often as a counter to
allow a certain number of events to take place. In the structure
FORI = 1 TO 10:NEXT I, the value of the variable I goes up
by one each time the loop cycles around. The same effect is
created by:

2000 LDX #$0A Decimal 10

2002 DEX “DEcrement” or “DEcrease X"’ by one

2003 BNE $2002 Branch if Not Equal (to zero) back up to ad-
dress $2002

Notice that DEX is tested by BNE (which sees if the Z
flag, the zero flag, is up). DEX sets the Z flag up when X fi-
nally gets down to zero after ten cycles of this loop. The only
other flag affected by this loop group is the N (negative) flag
for signed arithmetic.

Why didn’t we use INX, INcrease X by one? This would
parallel exactly the FOR I = 1 TO 10, but it would be clumsy
since our starting count which is #10 above would have to be
#245. This is because X will not become a zero going up until
it hits 255. So, for clarity and simplicity, it is customary to set
the count of X and then DEX it downward to zero. The follow-
ing program will accomplish the same thing as the one above
and allow us to INX, but it too is somewhat clumsy:

2000 LDX #$0
2002 INX

2003 CPX #$0A
2005 BNE $2002

Here, we had to use zero to start the loop because, right
off the bat, the number in X is INXed to one by the instruction
at $2002. In any case, it is a good idea simply to memorize the
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simple loop structure in the first example. It is easy and ob-
vious and works very well.

Big Loops

How would you create a loop which has to be larger than 256

cycles? When we wanted to add large numbers, numbers too

big to be held in a single byte, we simply used two-byte units

instead of single-byte units to hold our information. Likewise,

to do large loops, you can count down using two bytes rather

than one. In fact, this is quite similar to the idea of nested

loops (loops within loops) in BASIC.

2000 LDX #$0A Start of first loop.

2002 LDY #$0  Start of second loop.

2004 DEY

2005 BNE $2004 If Y isn’t yet zero, loop back to DEcrease Y
again—this is the inner loop.

2007 DEX Reduce the outer loop by one.

2008 BNE $2002 If X isn’t yet zero, go through the entire DEY
loop again.

200A Continue with the rest of the program....

One thing to watch out for: Be sure that a loop BNEs back
up to one address after the start of its loop. The start of the
loop sets a number into a register and, if you keep looping up
to it, you'll always be putting the same number into it. The
DEcrement (decrease by one) instruction would then never
bring it down to zero to end the looping. You'll have created
an endless loop. This is another one of those common bugs.
So if your program hangs up, check to see if you're looping
back into an initialization section.

The example above could be used for a timing loop in a
way that’s similar to the method that BASIC creates delays
with FOR T = 1 TO 2000: NEXT T. Also, sometimes you do
want to create a pseudo-endless loop (the BEGIN-UNTIL in
structured programming). A useful pseudo-endless loop in
BASIC waits until the user hits any key: 10 GET K$: IF K$ =
“” THEN 10.

The simplest way to accomplish this in ML is to look on
the map of your computer to find which byte holds the last
key pressed number. On the 128, it's $D4. In any event, when
a key is pressed, it deposits its special numeric value into this
cell. If no key is pressed, $D4 contains the number 88. How-
ever, there’s a built-in ROM routine at $FFE4 which will re-
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turn the ASCII value of a keypress. It’s often easier to use
than polling $D4 because $D4 gives character values in the
keyboard matrix code which differ from ASCII. (To find out
more about your keyboard input options, see INPUT and GET
in Chapter 9.) Here’s $FFE4 in action:

4000 JSR S$FFE4
4003 BEQ $4000

Unless a key is being pressed on the keyboard, a JSR to
$FFE4 results in a zero result (setting the Z flag), and so when
we test the Z flag with BEQ, we’ll keep looping back to ad-
dress 4000 in the example above until someone presses a key.
When a key is finally pressed, the BEQ test will then fail and
we’ll fall through to whatever instruction you have put at ad-
dress $4005 right below the BEQ. At this point, the accumulator
will hold the ASCII value of the key that was pressed.

Dealing with Strings
You’'ve probably been wondering how ML handles strings.

It's pretty straightforward. There are essentially two ways:
known-length and zero-delimit. If you know how many char-
acters there are in a message, you can store this number at the
very start of the text: SERROR. (The number 5 will fit into one
byte.) If this message is stored in your “‘message zone”’—some
arbitrary area of free memory set aside by you at the begin-
ning to hold all of your messages—you would make a note of
the particular address of the “ERROR" message. Say it’s
stored at address $0FE6 (4070).

To print out the message, you pluck off the length and
then repeatedly JSR to $FFD2, the 128’s character output rou-
tine in ROM. But remember that any time you want to access
the built-in ROM routines, you must have switched in bank 15
by LDA #0:STA $FF00.

Alternatively, you could simply set up your own zero
page pointers to the screen and use the STA (NN),Y addressing
mode (the NN means “any number”).

Screen memory starts at $0400 (1024). You can set up a
“cursor management”’ system for yourself. To simplify, we’ll
send our message to the beginning of the 128’s screen and just
use the simple absolute,Y addressing mode:
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2000 LDX $0FE6 Remember, we put the length of the message
as the first byte of the message, so we load our
counter with the length.

2003 LDY #$0 Y will be our message offset.

2005 LDA $0FE7,Y Gets the character at the address plus Y. Y is
zero the first time through the loop, so the “e”
from here lands in the accumulator. It also
stays in $0FE7 (4071). It's just being copied
into the accumulator.

2008 STA $0400,Y We can make Y do double-duty as the mes-
sage and the screen-printout offset. Y is still
zero, so the “‘e”" goes to $0400 the first tim

through the loop. '
2008 INY Prepare to add one to the message-storage

location and to the screen-print location.
200C DEX Lower the counter.

200D BNE $2005 If X isn’t used up yet, go back and get-and-
print the next character, the “r.”

One thing you should remember when printing to the
screen: there are two different codes you can use. If you STA
$0400 as we do in the example immediately above, you are
using the screen POKE code, the same code that would apply
were you to POKE that value from BASIC. The other code
(very similar to standard ASCII) applies when you load the
character value into the accumulator and then JSR $FFD2.

When you turn on the 128, its default mode is uppercase/
graphics. You can change it to uppercase/ lowercase by print-
ing CHR$(14)—in ML, LDA #14:JSR $FFD2—and back to
graphics by printing CHR$(12). Alternately, you can switch
between modes by pressing the SHIFT and Commodore keys
simultaneously. If, when you are testing the examples below,
you are getting graphics rather than letters of the alphabet,
you should switch to the uppercase/lowercase screen mode as
described. Using the $FFD2 printing routine, however, will
work as expected in any mode.

If the Length Is Not Known

There is yet another way to print to the screen—probably the
most common and the easiest, and it doesn’t require that you
know the length of the string. You just put a special character
(usually zero) at the end of each message to show its limit. -
This is called a delimiter. A zero works well because, in ASCII,
the value zero has no character or function (such as a carriage
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return) coded to it. Consequently, any time the computer loads
a zero into the accumulator (which will flip up the Z flag), it
will then know that it is at the end of your message. At
$0FE6, we might have a couple of error messages: ‘‘Ball out of
range0Time nearly up!0”. (These zeros are not ASCII zeros,
remember. ASCII zero, the zero character that can be printed,
has a value of 48.)

To print the time warning message to the top of the
screen:

2000 LDY #$0

2002 LDA $0FF8,Y Get the “T.”

2005 BEQ $2005 The LDA just above will flip the zero flag up
if it loads a zero, so we forward branch out of
our message-printing loop.

2007 STA $0400,Y We're using the Y as a double-duty offset
again.

200A INY

200B JMP $2002 In this loop, we always jump back. Our exit
from the loop is not here, at the end. Rather, it
is the Branch if EQual which is within the
loop. This is similar to the BEGIN-UNTIL
structure in structured programming.

200E Continue with another part of the program.

Now that we know the address which follows the loop
($200E), we can store that address into the ““false forward
branch” we left in address $2006. What number do we store
into $2006? Just subtract $2007 from $200E, which is 7.

Of these two ways of handling strings, the zero-delimit
method is the most popular and probably the easiest to use.
It's even easier if you use LADS. With LADS, you don’t need
to remember the address of the stored string, you just give
each string a label. Also, you don’t need to translate the mes-
sage into ASCII, just use the .BYTE pseudo-op in LADS. _
Here’s how you would write the source code for LADS using
the zero-delimit technique example above:

100 SCREEN = 1024 This variable is defined at the start of the pro-
gram, not with the body of the ML. The num-
bers on the left are not addresses;. they are
line numbers that you use when writing the
source code. The assembler handles memory
addresses for you.
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500 LDY #0

- 510 MESSAGE LDA TIMEOUT,Y Get the “T.”

520 BEQ MORE

530 STA SCREEN,Y

540 INY

550 JMP MESSAGE

560 MORE Continue with another part of the program.

1000 TIMEOUT .BYTE “TIME
NEARLY UP!”: BYTE 0 Message stored with a true zero at
the end. This is stored at the very
end of the ML program, not in with
the instructions themselves.

All the ways of handling messages discussed above are
effective, but you must keep a list on paper of the starting ad-
dresses of each message if you are using the monitor assem-
bler so that you can remember from where to pick off the
letters of the message. In ML, you have the responsibility for
some of the tasks that BASIC (at an expense of speed) does for
you. If you're using LADS, however, you can simply define
the location of the message with a label.

Also, when using these techniques, no message can be
larger than 255 characters because the offset and counter reg-
isters (X and Y) can count only that high before starting over
at zero again. To print two strings back-to-back gives a longer,
but still less than 255-byte-long, message:

2000 LDY #8$0

2002 LDX #$2 In this example, we use X as a counter which
represents the number of messages we are
printing,

2004 LDA $4000,Y Get the “B” from ‘“Ball out of....”

2007 BEQ $2011 Go to increment Y, reduce (and check) the

value of X.

2009 STA $0400,Y We're using the Y as a double-duty offset
again.

200D INY

200E JMP $2004

2011 INY We need to raise Y since we skipped that step

when we branched out of the loop.
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2012 DEX At the end of the first message, X will be a
one; at the end of the second message, it will
be zero.

2013 BNE $2004 If X isn’t down to zero yet, reenter the loop to
print out the second message.

This example, too, could not deliver a message longer
than 255 characters. To fill your screen with instructions in-
stantly (say, at the start of a game), you can use the following
mass-move. We’ll assume that the instructions go from $5000
to $6024 in memory and that you want to transfer them to the
screen (at $0400):

2000 LDY #8$0

2002 LDA $5000,Y

2005 STA $0400,Y

2008 LDA $5100,Y

200B STA $0500,Y

200E LDA $5200,Y

2011 STA $0600,Y

2014 LDA $5300,Y

2017 STA $0700,Y

201A INY '

201B BNE $2002 If Y hasn’t counted up to 0—which comes just
above 255—go back and load-store the next
character in each quarter of the large message.

This technique is fast and easy anytime you want to
mass-move one area of memory to another. It makes a copy
and does not disturb the original memory. To mass-clear a
memory zone (to clear the screen, for example), you can use a
similar loop, but instead of loading the accumulator each time
with a different character, you load it at the start with 32, the
128’s code for the character that prints a space:

2000 LDA #32
2002 LDY #0
2004 STA $0400,Y
2007 STA $0500,Y
200A STA $0600,Y
200D STA $0700,Y
2011 INY

2012 BNE $2004

Of course a simpler way to clear the screen would be to
JSR to the PRINT routine in BASIC ROM after having loaded
the clear-screen character into the accumulator: LDA #$93:JSR
$FFD2. In Chapter 7 we will explore the techniques of using
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BASIC as a group of examples to learn from and also as a
collection of ready-made ML subroutines. Now, though, we
can look at how subroutines are handled in ML.

5. The Subroutine and Jump Group:
JMP, JSR, RTS

JMP has only one useful addressing mode: absolute. You give
it a firm, two-byte argument and it goes there. The computer
puts the argument into the program counter, and control is
transferred to this new address where an instruction located
there is acted upon. (There is a second addressing mode, J]MP
indirect, which has a bug and is best left unused.)

JSR can use only absolute addressing.

RTS’s addressing mode is implied. The address is on the
stack, put there during the JSR.

JSR (Jump to SubRoutine) is the same as GOSUB in
BASIC, but instead of giving a line number, you give an ad-
dress in memory where the subroutine sits (or, with LADS,
you give a label name). BASIC’s SYS is a kind of JSR, too. It
acts like GOSUB, except the destination is an ML routine
rather than a BASIC subroutine.

RTS (ReTurn from Subroutine) is the same as RETURN in
BASIC, but instead of returning to the next BASIC command,
you return to the address following the JSR instruction (it's a
three-byte-long instruction containing JSR and the two-byte
target address). JMP (JuMP) is GOTO. Again, you JMP to an
address or label name, not a line number. As in BASIC, there
is no RETURN from a JMP.

Some Further Cautions About the Stack
The stack is like a pile of coins. The last one you put on top of -
the pile is the first one you'll pull off later. The main reason
that the 8502 chip sets aside an entire page of memory for the
stack is that it has to know where to go back to after GOSUBs
and JSRs.

A JSR instruction “pushes” the address held in the pro-
gram counter plus two onto the stack and, later, the next RTS
“pulls” the top two numbers off the stack, increments the re-
sult, and uses this number as its argument (target address) for
the return. Some programmers, as we noted before, like to
play with the stack and use it as a temporary register to PHA
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(PusH Accumulator onto stack). This sort of thing is best
avoided until you are an advanced ML programmer. Stack
manipulations often result in a very confusing program. Han-
dling the stack is one of the few things that the computer does
for you in ML. Let it.

The main function of the stack (as far as we’re concerned)
is to hold return addresses. It's done automatically for us by
““pushes” with the JSR and, later, “pulls” (sometimes called
pops) with the RTS instruction. If we don’t bother the stack, it
will serve us well. There are thousands upon thousands of
cells where you could temporarily leave the accumulator—or
any other value—without fouling up the orderly arrangement
of your return addresses.

Subroutines are extremely important to ML programming.

ML programs are designed around them, as we'll see.
There are times when you’ll be several subroutines deep (one
will call another which calls another); this is not as confusing
as it sounds. Your main player-input routine might call a
print-message subroutine which itself calls a wait-until-key-is-
pressed subroutine. If any of these routines PHA (PusH the
Accumulator onto the stack), they then disturb the addresses
on the stack. If the extra number on top of the stack isn’t
PLAed off (PulL Accumulator), the next RTS will pull off the
number that was PHAed along with half the correct address. It
will then merrily return to what it thinks is the correct ad-
dress: It might land somewhere in the RAM, it might go to an
address somewhere in the outer reaches of your operating sys-
tem—but it certainly won’t go where it should.

Some programmers like to change a GOSUB into a GOTO
(in the middle of the action of a program) by PLA PLA. Pull-
ing the two top stack values off with PLA PLA has the effect
of eliminating the most recently stored RTS address. It does
leave a clean stack, but why bother to JSR in the first place if
you later want to change it to a GOTO? Why not use JMP in
the first place. (There is some use for this technique, but it’s
for advanced ML programming where you want to speed up a
program by returning directly to some routine elsewhere in
the calling subprogram. LADS uses this method in places.)

There are cases, too, when the stack has been used to
hold the current condition of the flags (the status register
byte).
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This is pushed/pulled from the stack with PHP and PLP.
You probably never will, but if you should need to “remem-
ber” the condition of the status flags, why not just PHP PLA
STA $NN (NN means the address is your choice)? Set aside a
byte somewhere that can hold the flags (they are always
changing inside the status register during a program run) for
later and keep the stack clean. Leave stack acrobatics to Forth
programmers. The stack, except for advanced ML, should be
inviolate.

Forth, an interesting language, requires frequent stack
manipulations. But in the Forth environment, the reasons for
this and its protocol make excellent sense. In ML, though,
stack manipulations are a sticky business.

Saving the Current Environment

There are two exceptions to our leave-the-stack-alone rule.
Sometimes (especially when you are “borrowing’ a routine
from BASIC by JSRing into the ROM) you will want to take
up with your own program from where it left off. In other
words, you want to preserve what'’s in the registers.

However, when you JSR into one of these ready-made
subroutines, you often don’t know what sorts of things the
subroutine will do to your accumulator or X and Y registers.
To illustrate, let’s say you are going to open a disk file and
you've written the necessary subroutine and labeled it OPEN.
You will JSR to OPEN and it will have to JSR, in turn, several
times into the ROM to accomplish the job of opening a disk
file. However, you need to retain the status of the registers be-
cause your program is going to need them. You sometimes
cannot afford to have unpredictable things happen to your X,
Y, A, and status registers. If you know you don’t need to pre-
serve the state of the accumulator or the X or Y register, then
JSR blithely away. The JSR into ROM will probably change
the registers, but you don't care.

However, sometimes you are using, let’s say, Y to hold
the offset of a line of information or a screen line. You can’t
allow it to suffer from some unknown event in a ROM sub-
routine. In such cases, you can use the following “save the
state of things” routine:

2000 PHP Push the status register onto the stack.
2001 PHA
2002 TXA
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2003 PHA

2004 TYA

2005 PHA

2006 JSR OPEN To the various ROM calls necessary to open a
file that you've written as a subroutine called
“OPEN.” When the subroutine is finished, it
will end with an RTS. This RTS will remove the
return address ($2009) from the stack, and
you'll then have access to a mirror image of the
things you had pushed onto the stack. They are
pulled out in reverse order, as you can see be-
low. This is because the first pull from the stack
will get the most recently pushed number. If you
make a little stack of coins, the first one you pull
off will be the last one you put onto the stack.

2009 PLA Now we reverse the order to get them back.
200A TAY

200B PLA

200C TAX

200D PLA This one stays in A.

200E PLP The status register.

This example demonstrates how to save the registers, JSR
to a subroutine where unpredictable things will happen to the
registers, and then restore the registers to their previous state.
It preserves everything, including the flags (PHP, push proces-
sor status register) as it was before you JSRed. Use this tech-
nique when you're unsure. Nearly every ROM routine mentioned
in this book will alter one or more of the registers. The only
truly safe one is JSR $FFD2, the output-a-character routine.
You can use this one with impunity.

Saving the current state of things before visiting an un-
charted, unpredictable subroutine is probably the only valid
excuse for playing with the stack as a beginner in ML. The
routine above is constructed to leave the stack intact. Every-
thing that was pushed on has been pulled back off.

If you dare, you can also use the stack as a temporary
storage place when you need to save something briefly. You
could save the accumulator (while JSRing to the GET routine
in BASIC) by PHA:JSR $FFE4:PLA. That would temporarily
push the accumulator onto the stack, hold it there beneath the
two-byte return address pushed onto the stack by the JSR, and
then pull it off again after the RTS had fetched the return ad-
dress (leaving your accumulator on top of the stack). This
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pushing is sometimes considered a dangerous practice be-
cause, if you forget to match every push with a subsequent
pull, the stack will overflow and you might not realize why.
Use this trick at your own risk. For simple register saves, it’s
pretty easy to define register “‘holding bytes”” using LADS and
then stuff things there whenever you need temporary storage:

10 GET = $FFE4
100 STY Y:STA A:LOOP JSR GET:BEQ LOOP:LDA A:LDY Y

While, somewhere after the end of your program proper,
down with the messages and other things that are data, not
program, you have:

5000 A .BYTE 0

5010 Y .BYTE 0
5020 X .BYTE 0

The Significance of Subroutines

Possibly the best way to approach ML program writing—es-
pecially a large program—is to think of it as a collection of
subroutines. Each of these subroutines should be small. It
should be listed on a piece of paper followed by a note on
what it needs as input and what it gives back as parameters.
“Parameter passing” simply means that a subroutine needs to
know things from the main program (parameters) which are
handed to it (passed) in some way. Alternatively, if you are
using LADS, you can insert comments about parameters into
the body of the source code of the program using the semi-
colon (;) remark pseudo-op.

The current position of the record in a database is a
parameter which has its own “register” (we would have set
aside a register for it at the start when we were assigning
memory space either on paper for simple assemblers or by
using the equate pseudo-op for LADS). So, the “look at the
next record in the database’ subroutine is a double-adder
which adds 40 or whatever to the “current position register.”
This value always sits in the register to be used anytime any
subroutine needs this information. In other words, the register
(we called it FINGER in a previous example) is always point-
ing to our current position within the database. This is why
such registers are called pointers.

The “look at the next register”” subroutine sends the
current-position parameter by passing it to the current-position

register.
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This is one example of a way that parameters are passed.
Another example might be when you are telling a delay loop
how long to delay. Ideally, your delay subroutine will be
multipurpose. That is, it can delay for anywhere from 1/2 sec-
ond to 60 seconds or something. This means that the sub-
routine itself isn’t locked into a particular length of delay.

The main program will “‘pass”” the amount of delay to the
subroutine.

3000 LDY #$0
3002 INY

3003 BNE $3002
3005 DEX

3006 BNE $3000
3008 RTS

Notice that X never is initialized (set up) here with any
particular value. This is because the value of X is passed to
this subroutine from the main program. If you want a short
delay, you would:

2000 LDX #$5
2002 JSR $3000

And for a delay which is twice as long as that:

2000 LDX #$0A 10 decimal
2002 JSR $3000

In some ways, the less a subroutine does, the better. If it’s
not entirely self-sufficient, and the shorter and simpler it is,
the more versatile it will be. For example, our delay above
could function to time responses, to hold sounds for specific
durations, and so on. When you make remarks about a gen-
eral-purpose routine, write something like this: 3000 ; DELAY
LOOP (expects duration in X; returns zero in X).

The longest duration delay would be set up with LDX #0.
This is because the first thing that happens to X in the delay
subroutine is DEX. If you DEX a zero, you get 255. If you
need longer delays than the maximum value of X, simply:
2000 LDX #$0
2002 JSR $3000
2005 JSR $3000 Notice that we don’t need to set X to zero this

second time. It returns from the subroutine with
a zeroed X.

You could even make a loop out of the JSRs above for ex-
tremely long delays. The point to notice here is that it helps to
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document each subroutine in your library: what parameters it
expects; what registers, flags, and so-on, it changes; and what
it leaves behind as a result. This documentation—on a single
sheet of paper or within LADS source—helps you remember
each routine’s address and lets you know what effects and
preconditions are involved.

JMP

Like BASIC’s GOTO, JMP is easy to understand. It goes to an
address: JMP $5000 leaps from wherever it is to start carrying
out the instructions which start at $5000. It doesn’t affect any
flags. It doesn’t do anything to the stack. It’s clean and simple.
Yet some advocates of structured programming suggest avoid-
ing JMP (and GOTO). Their reasoning is that JMP is a shortcut
and a poor programming habit.

For one thing, they argue, using GOTO makes programs
confusing. If you drew lines to show a program’s “flow” (the
order in which instructions are carried out), a program with
lots of GOTOs would look like boiled spaghetti. Many pro-
grammers feel, however, that JMP has its uses. Clearly, you
should not overdo it and lean heavily on JMP. In fact, you
might see if there isn’t a better way to accomplish something
if you find yourself using it all the time and your programs are
becoming impossibly awkward. But JMP is convenient, often
necessary, in ML.

An 8502 Chip Bug
On the other hand, there is another, rather peculiar JMP
addressing mode which is hardly, if ever, used in ML: JMP
($5000). This is an indirect jump which works like the indirect
addressing we’ve seen before. Remember that with the
indirect,Y addressing mode, LDA ($81),Y, the number in Y is
added to the address found in $81 and $82. This address is the
real place we are LDAing from, sometimes called the effective
address. If $81 holds a 00, $82 holds a $40, and Y holds a 2,
the address we LDA from is going to be $4002. Similarly (but
without adding Y), the effective address found at the two
bytes within the parentheses becomes the place we JMP to in
JMP ($5000).

There are no necessary uses for this instruction. Best
avoid it the same way you avoid playing around with the
stack until you're an ML expert. If you find it in your comput-
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er’s BASIC code, it will probably be involved in an “indirect
jump table,” a series of registers which are dynamic. That is,
they can be changed as the program progresses. Such a tech-
nique is very close to a self-altering program and would have
few applications in ML. But worse than than, there is a bug in
the 8502 chip itself which causes the indirect JMP instruction
to malfunction under certain circumstances. Just put JMP
(SNNNN) into the same category as BPL and BMI. Avoid them.

If you decide that for some reason you must use indirect
JMP, be sure to avoid the edge of pages, such as JMP ($NNFF).
Whenever the low byte is right on the edge of a page ($FF is
on the edge, it’s ready to reset to $00), an indirect JMP will
correctly use the low byte (LSB) from the pointer at $NNFF,
but it will not pick up the high byte (MSB) from $NNFF+1 as
it should. Instead, it gets the high byte from $NNO0O.

Here’s how this error would work if you had set up a
pointer to address $5043 with the pointer located at $40FF:

$40FF 43
$4100 50

Your intention would be to JMP to $5043 by bouncing off
this pointer. You would write JMP ($40FF) and expect that the
next instruction the computer would follow would be the
instruction located at $5043. Unfortunately, your pointer
would malfunction in this example. You would land at $0043
(if address $4000 held a zero). The indirect JMP would get its
MSB from $4000.

This bug does not apply to any other addressing modes,
just JMP (indirect). So, unless you want to take a chance with an
addressing mode that’s strictly for advanced programmers, con-
tains a bug, and has no compelling uses, avoid JMP (indirect).

6. Debuggers:
BRK and NOP

BRK and NOP have no arguments and are therefore members
of that class of instructions which use only the implied
addressing mode. They also affect no flags in any way with
which we would be concerned. BRK does affect the I and B
flags, but since it is a rare situation which would require test-
ing those flags, we can ignore this flag activity altogether.
After you've assembled your program and it doesn’t work
as expected (few do), you start debugging. Some studies have
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shown that debugging takes up more than 50 percent of pro-
gramming time. Such surveys can be misleading, however, be-
cause “making improvements and adding options” frequently
take place after a program is allegedly finished and would be
thereby categorized as part of the debugging process.

Another factor is that these surveys reflect the sometimes
inefficient programming styles adopted by professional or aca-
demic programming teams. Some assemblers and compilers °
used by professionals are extraordinarily cumbersome, requir-
ing heroic efforts with linkers, maps, variable definition, and
so forth, before a piece of program can be tested. LADS, by
contrast, is virtually instantaneous. It will make the process of
debugging very efficient.

In ML, debugging is facilitated by setting breakpoints with
BRK and then seeing what’s happening in the registers or
memory. If you insert a BRK, it has the effect of halting the
program and throwing you into the monitor where you can
examine, say, the Y register to see if it contains what you
would expect it to at this point in the program. It’s similar to
BASIC’s STOP instruction:

2000 LDA #$15
2002 TAY
2003 BRK

At this point, you could use the monitor to examine any
areas of memory just as you would examine variables after
having your BASIC program STOP.

Debugging Methods
In practice, you debug whenever your program runs merrily
along and then does something unexpected. It might crash and
lock you out. You look for a likely place where you think it is
failing and just insert a BRK right over some other instruction.
Remember that when you're in the monitor mode, you can
directly change bytes, you can insert $00 (BRK) where you want.
In the example above, imagine that we put the BRK over
a STY $8000. Make a note of the instruction you covered over
with the BRK so that you can restore it later. After checking
the registers and memory, you might find something wrong,
some variable or register isn’t behaving as it should or you
somehow never even arrive at the break (some branch or J]MP
is being incorrectly activated). Now you have narrowed things
down. Now you can locate and fix the error.
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Sometimes it helps to have a printed listing of the suspect
area in a program. You can turn your printer on and off with
the .P and .NP options in LADS, printing out only the suspect
zone of the program and use that to help you locate errors
while working with the monitor. Alternatively, you can check
the program with the built-in disassembler.

If nothing seems wrong at this point, restore the original
STY over the BRK, and put BRK in somewhere further on. By
this process, you can isolate the cause of the oddity in your
program. Setting breakpoints (like putting STOP into BASIC
programs) is an effective way to run part of a program and
then examine the variables.

Like BRK ($00), the hex number of NOP ($EA) is worth
memorizing. If you're working within your monitor, you will
need to use hex numbers, and these two are particularly worth
knowing. /

NOP means NO oPeration. The computer slides over
NOPs without taking any action other than increasing the pro-
gram counter. There are two ways in which NOP can be effec-
tively used.

First, it can be an eraser. If you suspect that JSR $8000 is |

causing all the trouble, try running your program with every-
thing else the same, but with JSR $8000 erased. Simply put
three $EAs over the instruction and argument. (Make a note,
though, of what was under the $EAs so that you can restore
it.) Then, the program will run without this instruction, with-
out going to that subroutine at $8000, and you can watch the
effects.

Second, it is sometimes useful to use $EA to hold open
some space temporarily. If you don’t know something (an ad-
dress, a graphics value) during assembly, $EA can mark that
this space needs to be filled in later before the program is run.
As an instruction, it will let the program slide by. $EA could
become your “fill this in” alert within programs in the way
that we use self-branching (leaving a zero) to show that we
need to put in a forward branch’s address when using a mini-
assembler.

Less Common Instructions

The following instructions are not often necessary for begin-
ning applications, but we can briefly touch on their main uses.
There are several logical instructions which can manipulate or
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Chapter 6

test individual bits within each byte. This is most often nec-
essary when interfacing. If you need to test what’s coming in
from a disk drive, or translate on a bit-by-bit level for I/O
(input/output), you might work with the logical group.

In general, I/O is handled for you by your machine’s
operating system and is well beyond beginning ML program-
ming. I/O is perhaps the most difficult, or at least the most
complicated, aspect of ML programming. When putting things
on the screen, programming is fairly straightforward, but han-
dling the data stream into and out of a disk is pretty involved.
Timing must be precise, and the preconditions which need to
be established are complex.

For example, if you need to mask a byte by changing
some of its bits to zero, you can use the AND instruction.
After an AND, both numbers must have contained a one in
any particular bit position for it to result in a one in the an-
swer. This lets you set up a mask: 00001111 will zero any bits
within the left four positions. So, 00001111 and 11001100 re-
sult in 00001100.

The unmasked bits remained unchanged, but the four
high bits were all masked and, thus, zeroed.

There is a minor use for AND when you want to change
a character to a reverse (black on white) or change it back to
normal. The reversed letter A, for example, has a value of $C1
which looks like this in binary (all the bits within the byte
showing): 11000001. Notice that the left two bits are “on.” To
change this to a normal A character, we need to turn the
leftmost bit off so that we end up with 01000001, which is
$41. You can turn off the leftmost bit by 11000001 AND
01111111, which will leave 01000001. When this is expressed
in hex numbers, you take the reversed A ($C1) and AND it
with 01111111 ($7F) to get the normal $41. Likewise, reversed
B ($C2) AND $7F results in a normal B ($42).

Going the other way, you can change a normal A into a
reversed A by $41 ORA $80 (10000000). The ORA instruction
is the same as AND, except it lets you mask to set bits (make
them a one). Thus, 11110000 ORA 11001100 results in
11111100. The accumulator will hold the results when these
instructions are used.

EOR (Exclusive OR) permits you to toggle bits. Toggle
means to switch back and forth between two states, like tog-
gling a light switch on and off. If a bit is 1, it will go to 0. If
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it’s 0, it will flip to 1. EOR is sometimes useful in games. If
you are heading in one direction, for example, and you want
to go back when bouncing a ball off a wall, you could toggle.
Let’s say that you use a register to show direction: When the
ball’s going up, the byte contains the number 1 (00000001),
but down is 0 (00000000). To toggle this least significant bit,
you would EOR with 00000001. This would flip 1 to 0, and 0
to 1. This action results in the complement of a number. Thus,
11111111 EOR 11001100 results in 00110011.

To know the effects of these logical operators, we can
look them up in truth tables which give the results of all pos-
sible combinations of zeros and ones:

AND OR EOR
0OANDO =0 OORO0 =10 0EORO0 =0
0AND1 =0 OOR1 =1 0EOR1 =1
1AND O =0 10R0=1 1EORO0 =1
1AND1 =1 10R1 =1 1EOR1 =0

Another instruction, BIT, also tests (it does an AND), but,
like the BNE, and so forth, branch instructions, it does not af-
fect the number in the accumulator—its sole purpose is to set
flags in the status register. The N flag is set (has a one) if bit 7
has a one (and vice versa). The V flag responds similarly to
whatever value is in the sixth bit of the tested byte. The Z flag
shows whether or not the result of the AND resulted in a
zero. Instructions, like BIT, which do not affect the numbers
being tested are called nondestructive.

We discussed LSR and ASL in the chapter on arithmetic:
They can conveniently divide and multiply by two. ROL and
ROR rotate the bits left or right in a byte, but, unlike with the
Logical Shift Right or Arithmetic Shift Left, no bits are lost off
one end during the shift. ROL will leave the seventh (most
significant) bit in the carry flag, leave the carry flag in the
zeroth bit (least significant bit), and move every other bit one
space to the left:

ROL 11001100 With the carry flag set, results in:
10011001 Carry is still set; it got the leftmost one.

If you disassemble your computer’s BASIC, you may well
look in vain for an example of ROL, but it and ROR are avail-
able in the 8502 instruction set if you should ever find a use
for them.

Should you go into advanced ML arithmetic, ROL and
ROR can be used for multiplication and division routines.
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Please see Appendix A for more details on some of these ob-
scure instructions if you're interested.

Three other instructions remain to be discussed: SEI (SEt
Interrupt), RTI (ReTurn from Interrupt), and CLI (CLear Inter-
rupt). These operations are also beyond the scope of a book
on beginning ML programming, but we’ll briefly note their ef-
fects. Your computer gets busy as soon as the power goes on.
Things are always happening: Timing registers are being up-
dated; the keyboard, the video, and the peripheral connectors
are being refreshed or examined for signals. To interrupt all
this activity, you can SEI, perform some task, and then CLI to
let things pick up where they left off.

SEI sets the interrupt flag. Following this, all maskable
interruptions (things which can be blocked from interrupting
when the interrupt status flag is up) are no longer possible.

There are also nonmaskable interrupts which, as you might
guess, will jump in anytime, ignoring the status register.

The RTI instruction (ReTurn from Interrupt) restores the
program counter and status register (takes them from the
stack), but the X and Y registers, and so on, might have been
changed during the interrupt. Recall that our discussion of the
BRK instruction involved the above actions. The key difference
is that BRK stores the program counter plus two on the stack
and sets the B flag on the status register. CLI puts the inter-
rupt flag down and lets all interrupts take place.

If these last instructions are confusing to you, it doesn’t
matter. They are essentially hardware and interface related.

You can do nearly everything you will want to do in ML
without them. How often have you used WAIT in BASIC?

A Newer Chip

The venerable 6502 chip, which has been the brains of most
of the popular home computers for years, has been replaced in
the 128 by the 8502. From a programmer’s point of view,
there’s no difference between the two.

Commodore owns the manufacturer of the 6502 and its
newer cousins. When the 64 was built, they decided to make a
few changes to the 6502 and called it the 6510. Similarly, a
few more changes resulted in the 8502 inside the 128. These
chips are physically different—they are not pin-compatible.
This means you cannot pull a 6502 out of a socket and plug
an 8502 in its place, because the operating signals appear on
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different pins. (If you're interested, the data bus is pins 30-37
on a 6510, but pins 26-33 on a 6502. The 6510 is a 6502 with
an on-chip six-bit I/O port addressed at locations 0000 and
0001. The 8502 is an enhanced 6510, capable of operating at 2
megahertz and with a seven-bit I/O port.)

For programmers, though, the significant thing is that
none of the physical differences reflect any modifications to
the instruction set, the commands we’ve been learning in this
chapter. From a programmer’s perspective, the three processors
used in the Commodore machines are identical.

In any event, we’ve covered all the instructions now. It’s
time to explore some important shortcuts. Life would be far
tougher for ML programmers if they had to write, for example,
the entire complex of instructions necessary to communicate
with the disk drive. Fortunately, we can turn jobs like that
over to the ML routines already written, already inside BASIC.
That’s the subject of the next chapter.
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Borrowing from BASIC

BASIC is a collection of ML subroutines. It is a large web of
hundreds of short ML programs. Why not use some of them
by JSRing to them? At times, this is in fact the best solution to
a problem.

How would this differ from BASIC itself? Doesn’t BASIC
just create a series of JSRs when it runs? Wouldn't using BA-
SIC’s ML routines in this way be just as slow as BASIC is?

In practice, you will not be borrowing from BASIC for
everything you try to do. One reason is that such JSRing
makes your program far less portable, less easily run on other
computers or other models of your computer. When you JSR
to an address within your ROM set to save yourself the trou-
ble of reinventing the wheel, you are, unfortunately, making
your program applicable only to machines which are the same
model as yours.

While Commodore has been better than many computer
companies at keeping important ROM addresses like $FFD2 in
the same place in new models, there are no guarantees that
this will always be the case.

However, if you want your program to work on many dif-
ferent computer brands, you'll need to limit the degree to
which you make it ROM-specific. Stick to the few essential
ones (see the equates at the beginning of the LADS program
for the few ROM routines that it needed to use).

If you try to get too tricky—using your BASIC’s or operat-
ing system’s ROM to the maximum—your programs will be
pretty hard to translate to other Commodore computer mod-
els, not to mention other computer brands. For example, the
subroutine to allocate space for a string in memory is found at
$D3D2 in the earliest Commodore PET model. A later version
of PET BASIC (Upgrade) used $D3CE, and the current models
use $C61D. Although Microsoft BASIC is nearly universally
used in personal computers (Atari is the exception), each
computer’s version differs in both the order and the addresses
of key subroutines.
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Jump Tables and Other Menus

To help overcome this lack of portability, some computer
manufacturers set aside a group of frequently used subroutines
and create a “jump table,” or, as Commodore calls it, a
Kernal, for them. The idea is that future, upgraded BASIC ver-
sions will still retain this table. It would look something like
this:

FFCF 4C 15 F2 INPUT one byte

FFD2 4C 66 F2 OUTPUT one byte

FFD5 4C 01 F4 LOAD something
FFD8 4C DD F6 SAVE something

This example is part of the Commodore Kernal and is in-
tended to apply to all future versions of BASIC on Com-
modore machines.

One interesting thing about this table of jumps is that
there is a trick to the way this sort of table works, and you
might want to use it yourself sometime. Notice that each
member of the table begins with 4C. That’s the JMP instruc-
tion and, if you land on it, the computer bounces right off to
the address which follows.

Now, at that address following the 4C, there is going to
be a subroutine (so it will end in RTS). So, when we JSR to
one of the JMPs inside this table, to, say, FFD2, we're going to
land on a JMP and rebound, just bounce right off the JMP ta-
ble to the correct subroutine. When that subroutine finally fin-
ishes its work and ends in RTS, we will be returned to our
starting place. That’s how a JMP table works and it can be a
useful technique.

By the way, the PRINT subroutine is a fundamental one
in any computer because it offers you so much value. For one
thing, it keeps track of the cursor position which is in-
cremented each time you access PRINT. It works semi-
automatically, and you don’t have to keep track of where you
are on the screen. The PRINT-the-character routine in the 128
is $FFD2 (65490 decimal). This is a very important address;
you should memorize it.

For convenience, you might want to make a standard
“header” for all your ML source programs that you use with
LADS. It would consist of a series of “equates” which define
frequently used internal subroutines by giving them labels:
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30 PRINT = $FFD2; PRINTS CHARACTER IN
ACCUMULATOR
40 SCREEN = $0400; LOCATION OF TEXT SCREEN

Then, when you're writing an ML source program using
LADS and want to print some character, you just JSR PRINT.
ML can thus be very similar to BASIC in that when you are
going to use a known subroutine, a subroutine that you've
given a label at the beginning of your program in the manner
illustrated above, you just type a word like SCREEN that
means something to your program and also means something
memorable to you. You might want to use the routines de-
fined in the Defs subprogram of LADS as a useful starter set
of ROM routines.

The same PRINT routine will work for a printer or a disk
or a tape—anything that the computer sees as an output de-
vice. However, unless you open a file to one of the other de-
vices, the computer defaults to (assumes) the screen as the
output device, and $FFD2 prints there. To see how to set up
different output targets, see the Openl source code of LADS
in Appendix D. It will show you the way to load or save a
program.

So, if you look into any ML program and discover a series
of JMPs (4C xx xx 4C xx xx), you've found a jump table. Using
a jump table should help make your programs compatible
with later versions of BASIC which might be released.

What’s Fastest?

Since, when a BASIC program runs, it is JSRing around in-
side itself, how, then, is a JSR into BASIC code any faster than
a BASIC program? The answer is that a program written en-
tirely in ML, aside from the fact that it borrows only sparingly
from BASIC prewritten routines, differs from BASIC in an im-
portant way.

A finished ML program is like compiled code; that is, it is
ready to execute without any overhead. BASIC, for each com-
mand or instruction, must be interpreted as it runs. This is
why BASIC is called an interpreter. Each instruction must be
looked up in a table to find its address in ROM. And many
other aspects of a BASIC instruction need to be interpreted.
All this takes time. Your ML code will contain the direct ad-
dresses for its JSRs. When that ML program runs, the instruc-
tions don't need elaborate interpretation, time-consuming
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cross-checking, table lookups, or any other delay. The JSR just
leaps into the right area of BASIC ROM without further ado.

There are special programs called compilers which can
take a BASIC program and transform (compile) it into ML-like
code which can then be executed like ML, without having to
interpret each command during the program’s run. The JSRs
are within the compiled program, just as in ML. Compiled
programs will run perhaps 20 to 40 times faster than the
BASIC program they grew out of. (Generally, there is a small
price to pay in that the compiled version is almost always
larger than its BASIC equivalent.)

Compilers are interesting; they act almost like automatic
ML writers. You write it in BASIC, and they translate it into
an ML-like program. Even greater improvements in speed can
be achieved if a program uses no floating point (decimal
points) in the arithmetic. Also, there are “optimized” com-
pilers which take longer during the translation phase to com-
pile the finished program, but which try to create the fastest,
most efficient compiled program design possible. No compiler
is excessively slow, however. A good optimizing compiler can
translate an 8K BASIC program in two or three minutes. Well,
why not just compile BASIC programs and forget about ML
altogether? The main reason is that ML is always far faster
than even optimized compilations. You just can’t beat the ef-
ficiency of hand-crafted communications which speak directly
to the chip in its own language.

GET and PRINT
Two of the most common activities of a computer program are
getting characters from the keyboard and printing them to the
screen. To illustrate how to use BASIC from within an ML
program, we’'ll show how both of these tasks can be accom-
plished from within ML.

Try this program and hit a key on the keyboard. Notice
that the code number for whatever character you typed on the

keyboard appears in the accumulator.
The 128’s BASIC’s GET:

10 *= $B00

20.S

30.0

40 LOOP JSR $FFE4; get a key from the keyboard
50 BEQ LOOP; if no key pressed, try again

60 BRK; now check what’s in the accumulator
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This routine will wait until the user types in a character,
but will not show a cursor on the screen. Nor will it print an
“echo,” an image of the character on the screen.

- To print any character to the screen:

2000 LDA #$41 Put the character’s ASCII value into the
accumulator.
2002 JSR S$FFD2 Print it.

If you combine these routines into a “GET and PRINT,”
you can leave out the LDA #$41, because JSR $FFE4 will have
left the value of whatever key you typed in the accumulator,
and JSR $FFD2 will print whatever is in the accumulator to
the next available location onscreen. Here’s the completed
GET and PRINT routine:

10 *= $B00

2.8

30.0

40 LOOP JSR $FFE4; get a key from the keyboard
50 BEQ LOOP; if no key pressed, try again

60 JSR $FFD2; print it

However, if you intend to use or analyze what’s being
typed into the computer, you must also store each character
somewhere in RAM:

10 *= $B00

20 .S

30.0

35 LDY #0:STY STOREY; set up pointer to string buffer

40 LOOP JSR $FFE4; get a key from the keyboard

50 BEQ LOOP; if no key pressed, try again

60 JSR $FFD2; print it

70 LDY STOREY:STA BUFFER,Y:INY:STY STOREY; save
character and Y ,

80 JMP LOOP; get another character

500 BUFFER .BYTE00000000000000000000000
510 STOREY .BYTE 0; safe place to keep the value of Y

$FFD2 doesn’t change the value of X or Y when we JSR
to it. When it RTSs back to our ML program, X and Y are the
same as when we JSRed to $FFD2. Most BASIC ROM routines,
however, aren’t that considerate. Usually, they’ll use X and Y
and RTS back to your ML with those registers changed un-
predictably. So, it's sometimes necessary to preserve the val-
ues in X or Y, prior to JSRing into ROM, if you're using X or Y
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for looping or other purposes. We’ve done that in the example
above by setting aside a byte to hold Y (line 510) and by
fetching, updating, and saving Y when necessary (line 70).

Notice that this example is an endless loop: It has no way
to exit its loop. You would need to add a CMP #13 if you
wanted to exit when the typist hit the RETURN key. You
would CMP #13:BEQ END to branch to a label called END
which you put somewhere beyond this loop, beyond that JMP
LOOP instruction in line 80. You could insert your check for
carriage return at line 55. Or, because we’ve set aside a buffer
with only 23 bytes to hold the characters (line 500), you might
want to check the value of Y and CPY #23:BEQ END to pre-
vent further input when the buffer had been filled.

In any event, the ML routine within BASIC ROM which
keeps track of the current cursor position and will help you
print things to the screen is often needed in ML programming.
$FFD2 will handle this for you.

You will discover that there are many freeze-dried ML
modules sitting in BASIC. These routines were written by the
professionals who built BASIC itself, and their methods can
seem intimidating at first. However, disassembling some of
these routines and picking them apart is a good way to dis-
cover new techniques, new efficiencies, and to see how the
best ML programs are constructed.

Here’s another example to look at. It illustrates how to
print out a string, the length of which is known in advance.
Although this is less common than the zero-delimiter method
of printing strings (BEQ is triggered by a zero at the end of the
string), you'll still see this printout method in some software:

19 *= $2000

30 LENGTH = 10
40 PRINT = $FFD2

’
63 START LDY #0
79 CLOSE LDA STRING,Y
8d JSR PRINT
99 INY
198 CPY #LENGTH
119 BNE CLOSE
120 RTS
130 ;
140 STRING .BYTE "SUPERDUPER

READY .
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Studying your computer’s BASIC is worth the effort, and
it’s something you can do for yourself. You won’t understand
everything (some shortcuts are taken which are obscure in the
extreme). Nevertheless, if you've got some time, take a look at
a particular routine and see if you can see the logic in it, its
purpose and structure. And, as you can see by the example
above, you have great freedom to construct the customized
INPUT routine that suits your ML program perfectly, that re-
flects precisely what you want to allow or disallow the user to
INPUT, and that formats to the screen or saves in a buffer in
the exact way that’s most efficient for your purposes.
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Building a Program

Using what we’ve learned so far and adding a couple of new
techniques, let’s build a useful program. This example will dem-
onstrate many of the techniques we’ve discussed and will also
show some of the thought processes involved in writing ML.
Among the computer’s more impressive talents is search-
ing. It can run through a mass of information and find some-
thing very quickly. We can write an ML routine which looks
through any area of memory to find matches with anything
else. Based on an idea by Michael Erperstorfer published in
COMPUTE! magazine, this ML program will report the line
number of all the matches it finds. You'll also find this a use-
ful utility to keep on your LADS disk. If you need to find a
particular subroutine in a long source code file, this
““Searcher” program can save considerable time and effort.

Safe Havens

Before we go through some typical ML program-building
methods, let’s review the “where do I put it?”” question. ML
can’t be just dropped anywhere in RAM. When you give the
starting address to LADS at the beginning of your source code
with the *= symbol, you can’t just put in any address that
pops into mind.

There are other things going on in the computer in addi-
tion to your hard-won ML program. RAM is used in many
ways. There is always the possibility that you want to have a
BASIC program coresident with your ML program. If so, you'll
need to figure out where to put the ML so that it won’t cover
up, or be covered up by, the BASIC. Too, BASIC needs to use
part of RAM to store some of its variables. During execution,
these variables might be written (POKEd) into your vulnerable
ML if you located it in a vulnerable zone. That would fatally
corrupt your ML.

Also, the operating system, the disk operating system,
cassette or disk loads, printers—they all use parts of RAM for
their housekeeping activities. There are other things going on
besides your ML. And you obviously can’t put your ML pro-
gram into ROM addresses. That’s impossible. Nothing can be
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POKEd into those frozen ROM addresses; they're read only
memory, no writing allowed.

This is one good use for a map of the 128. It will tell you
where you can safely store your programs and variables with-
out interfering with space used by the computer itself. For ex-
ample, assume that you're writing a program which will need
to access the disk drive. To complicate things, you want to use
about six two-byte spaces in zero page (the lowest 256 bytes
in memory) for your own program. ROM routines also make
heavy use of zero page, but you can’t use bytes they’ll be
using since the ROM routines would then interfere with your
data and mess up your pointers. The solution is to look at the
map (see Appendix C).

To solve the above problem, you'd notice that addresses
250-254 are safe. But we need more than this. Looking at the
map of the 128, you can see that addresses 99-111 are used
for floating-point operations and thus can be expected to be
safe, too. We'll be accessing the disk drive but the floating-
point routines won'’t be involved in this program. That solves
our problem.

On the 128, the tape-drive zero page usage is not conve-
niently contiguous, but you can still find two-byte pairs which
are safe. Also, if you're not using other ROM routines in your
program, look for their zero page areas. For example, the floating-
point accumulators can often be used if you're not accessing
math routines in ROM.

You'll also be able to stash things (though not for zero
page access) safely in various other places in RAM where your
ML program won’t be in the way. If you're not using sprites,
you can put your program or variables between addresses
3584 and 4095. Also free for ML use is the foreign language
and function key area between 4864 and 7167 or the section
reserved for a BASIC program even when bank 15 is operative
(7168-16384).

The 128 is a very RAM-rich machine, though, so you'll
also be able to use most of banks 0 and 1 even if you do re-
quire ROM routines. Just switch them in and out as necessary,
or invoke the special long-distance LDA, STA, CMP, JSR, and
JMP Kernal routines available in the 128.
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Misleading the Computer

If the ML is a short piece of program, you can stash it into the
safe $B00-$BFF zone mentioned before, the cassette drive
buffer area. Because this safe area is only 256 bytes long, and
because so many ML routines will want to use that area, it can
become crowded. Worse yet, it isn’t 100 percent safe. The 128
uses the top part of this area sometimes. If you notice odd
things happening, memory conflict is one of the first things to
suspect. For example, you might be able to run an ML pro-
gram at $B00 the first time, but subsequent SYSs to it will
crash. If you've used a ROM routine, it might well have “bor-
rowed” a few bytes from the $B00 zone. That would have the
effect of damaging your ML.

An alternative, particularly worthwhile when you're using
ML as an extension of BASIC and they are supposed to work
together, is to deceive the computer into thinking that its RAM
is smaller than it really is.

Your ML will be truly safe if your computer doesn’t even
suspect the existence of some set-aside RAM. It will leave the
now-safe RAM alone because you've told it that it has less
RAM than it really does. Nothing can overwrite your ML pro-
gram after you’'ve misled your computer’s operating system
about the size of its RAM memory. There are two bytes in
zero page which tell the computer what its highest RAM ad-
dress is for bank 1. You just change those bytes to point to a
lower address. You can have your ML program do this as its
first job. While this trick is effective on the 64, the 128’s mem-
ory management system makes things more complicated.

Nevertheless, if you want to try, these crucial top-of-
memory bytes are 57,58 ($39,$3A hex).

To repeat, pointers such as these are stored in LSB,MSB
order. That is, the more significant byte (the one that’s mul-
tiplied by 256) comes second (this is the reverse of normality).
For example, $8000, divided between two bytes in this top-of-
RAM pointer, would look like this:

0039 00
003A 80

As we mentioned earlier, this odd inversion of normal nu-
meric representation is a peculiarity of the 8502 that you just
have to get used to. You can take comfort in the fact that the
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8502 and its family of chips have far fewer peculiarities and il-
logical rules than their main rivals, the Z80 family. You can be
driven to distraction with chips where the language is frequently
at odds with the way humans think. Destinations precede
sources, and so on. It's maddening. Fortunately, the 68000
chip, the chip in the Amiga, is a sensible, programmer-friendly
chip, too. If you go on to learn how to work with this new
generation of chips, the 8502 family will seem both familiar
and reasonable. But do beware of the pointer inversion: The
LSB is stored in the lower byte in memory. It's a small price to
pay for an otherwise well-designed microprocessor.

Anyway, you can lower the computer’s opinion of the’
top-of-RAM-memory, thereby making a safe place for your
ML in 64 mode, by changing only the MSB. If you need one
page (256 bytes), POKE 58, PEEK (58)—1. For four pages, POKE
58, PEEK (58)—4, and so on. You don’t need to fiddle around
with the LSB of the pointer. Give yourself plenty of room.
Note that for the POKEs to be effective, they must be followed
by a BASIC CLR (CLeaR variables) command. The full state-
ment would be something like POKE 58, PEEK(58)—4:CLR.
Since the CLR erases all variable values, this should generally
be the first statement in any program in which this technique
is used.

This chapter also introduces an important consideration
when assembling source code that’s larger than 1K (1024
bytes). When your work begins to exceed this size, you should
switch to disk-based assembly (see Appendix B for complete
instructions). The reason is that LADS reserves all of bank 1
for object code and all of bank 0 for source code. LADS itself
is in bank 15 (which uses the same RAM as bank 0) and,
when you are assembling with RAMLADS—as we have for all
the examples in the book thus far—small source code will cre-
ate no memory conflicts.

However, source code for RAMLADS resides at 7168 and,
as you type in more source code, it builds up from there.
RAMLADS itself resides at 10000. This leaves 2832 bytes free.
During assembly, LADS builds its label array down from
10000 and so, when your source code reaches a size some-
what larger than 1K, the labels and source will meet and
you'll start getting error messages about undefined labels that
you know you've defined, and so forth.

RAMLADS is best for trying out short, under 1K, source
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code. When your program grows beyond this size, you need
to switch to DISKLADS. With DISKLADS, source code or ob-
ject code can be much larger since each source file is loaded
from disk into bank 0 RAM above LADS, assembly takes place
on the source code in memory, and the resulting object code is
stored in bank 1 where it will be entirely safe. When all source
files have been assembled, the object code will be saved to disk.
Because of all the comments, the source code of Searcher,
the example program in this chapter, is 4K large. You can type
it all in without worry, but you should make a habit of first
DSAVEing source code prior to assembling in case you run
into memory conflict or other problems during the assembly.
It is necessary to invoke DISKLADS with Searcher. If you at-
tempt to assemble it via RAMLADS, LIST will reveal that part
of the source code has been overwritten by the label array.

Building the Code

Now we return to the subject at hand—building an ML pro-
gram. Most people find it easiest to mentally divide a task into
several tasks, solve the individual small tasks, and then weave
them all together into a complete program. That’s how we’ll
attack the job of building a search program.

We will build our ML program in pieces and then tie
them all together at the end. The first phase, as always, is the
initialization. We set up the variables and fill in the pointers.
Lines 90 and 100 define two, two-byte zero page pointers. L1L
is going to point at the address of the BASIC line we are cur-
rently searching through; L2L points to the starting address of
the line following it.

BASIC stores four important bytes just prior to the start of
the code in each BASIC line. Take a look at Figure 8-1. The
first two bytes contain the address of the next line in the
BASIC program. Thus, when BASIC has finished evaluating
and acting upon the current line, it will already know where
to go to find the next line. This is called linking.

The second two bytes hold the line number. The end of a
BASIC line is signaled by a zero. Zero does not stand for any-
thing in the ASCII code or for any BASIC command. This is
quite similar to the way we signal in ML programs that a text
message is finished—Dby storing a zero at the end of the text.
We discussed this earlier when we talked of delimiting an
ASCII message.
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If there are three zeros in a row, it tells BASIC that it has
reached the end of the program in memory. Three zeros is a
super delimiter.

But back to our examination of the ML program. In line
110 is a definition of the zero page location which holds a
two-byte number that BASIC looks at when it is going to print
a line number on the screen. We’ll want to store line numbers
in this location as we come upon them during the execution of
our ML search. Each line number will temporarily sit waiting
in case a match is found. If a match is found, the program will
JSR to the BASIC ROM routine we're calling PLINE, as de-
fined in line 140. This routine prints a line number on the
screen, and it will need to have the ““current line number’”
where it expects to find it.

Line 120 establishes that BASIC RAM starts at $1C00,
and line 130 gives the address of the “print the character in
the accumulator” ROM routine. Use *= $B00 to put the object
code into the traditional “safe’”” RAM area to store short ML
programs.

Refer to Program 8-1 to follow the logic of the construc-
tion of our search program. The search is initiated by typing in
line 0, followed by the item we want to locate. It might be
that we are interested in removing all REM statements from a
program to shorten it. We would type OREM and hit RETURN
to enter this line into the BASIC program. Then we would
start the search by a SYS to the starting address of the ML
program: SYS 2816.

By entering the “sample” string or command into the
BASIC program, we simplify our task in two ways. First, if the
thing we're searching for is a string, it will be automatically
stored as the ASCII code for that string, just as BASIC stores
strings.

If it is a keyword like REM, it will be translated into the
“‘tokenized,” one-byte representation of the keyword, just as
BASIC stores keywords.

The second problem this method solves is that our sample
is located in a known area of RAM. By looking at Figure 8-1,
you can tell that the sample’s starting address will always be
the start of BASIC plus five. In Program 8-1 that means $1C05
(see line 1090).
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Set Up the Pointers
Our first job, as always when we're going to be using ROM
routines, is to switch in bank 15. We do this in lines 190-200.

Then we’ll need to get the address of the next line in the
BASIC program we are searching. And then we need to store
it while we look through the current line. The way that BASIC
lines are arranged, we come upon the link to the next line’s
address and the line number before we see any BASIC code it-
self. Therefore, the first order of business is to put the address
of the next line into our L1L location for safekeeping. Lines
240-270 take the link found in start-of-BASIC RAM (plus one)
and move it to the storage pointer L1L.

Next, lines 320-380 check to see if we have reached the
end of the BASIC program. It would be the end if we had
found two zeros in a row as the pointer to the next line’s ad-
dress. If it is the end, the RTS sends us back to BASIC mode.

The subroutine in lines 540-720 saves the pointer to the
following line’s address and also the current line number.

Note the double-byte addition in lines 670-720. We al-
ways CLC before any addition. If adding four to the LSB (line
680) results in a carry, we want to be sure that the MSB goes
up by one during the ADd with Carry in line 710. At first
glance, it seems to make no sense to add a zero in that line.
What's the point? We're doing an addition with carry; in other
words, if the carry flag has been set up by the addition of four
to the LSB in line 680, then the MSB will have one added to
it. That's the carry. The carry flag makes this happen.

First Characters

When you're searching for something, say, your car in a park-
ing lot, you look for something distinctive. You might search
for the color blue, or perhaps a plastic flower that you've at-

* tached to the antenna. You certainly don’t look at each entire
car, at the hood, the wheels, the windows, the size, the color,
etcetera, etcetera. You look for a single attribute; then, if the
car is blue, you compare other attributes to see if it is indeed
entirely the same as yours.

Likewise, it’s better just to compare the first character in a
word against each byte in the searched memory than to try to
compare the entire sample word. If you are looking for the
word MEM, you don’t want to stop at each byte in memory
and see if M-E-M starts there. Just look for M’s. When you
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Chapter 8

come upon an M, then go through the full string comparison.
If line 920 finds a first-character match, it transfers the pro-
gram to the subroutine labeled SAME (line 1060) which will
perform a thorough comparison.

On the other hand, if the routine starting at line 890
comes upon a zero (line 900), it knows that the BASIC line
has ended (all BASIC lines end with zero, and zero is not used
in any other way within a BASIC program). Our search pro-
gram then goes down to STOPLINE (line 1240), which puts
the “next line” address pointer into the “current line”” pointer,
and the whole process of reading a new BASIC line begins
anew.

If, however, a perfect match was found (line 1100 found a
zero at the end of the 0:REM line, showing that we had come
to the end of the sample string), we go to PERFECT and it
makes a JSR to print out the line number (line 1390). The
PERFECT subroutine bounces back (RTS) to STOPLINE,
which replaces the “current line”” (L1L) pointer with the “next
line” pointer (L2L).

Then we JMP back to READLINE, which, once again,
pays very close attention to zeros to see if the whole BASIC
program has ended with a pair of zeros. We have now re-
turned to the start of the main loop of this ML program.

This all sounds more complicated than it is. If you've fol-
lowed it so far, you can see that there is enormous flexibility
in constructing ML programs. If you want to put the STOP-
LINE segment before the SAME subroutine—go ahead. Self-
contained subroutines are not position-dependent.

It is quite common to see a structure like this:

Definitions
SCREEN = $0400
Initialization
LDA #15

STA $83

Main Loop

START JSR 1

JSR 2

JSR 3
BEQ START Until some index runs out
RTS To BASIC
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Subroutines

1

2 Each ends with RTS back to the Main Loop
3

DATA

Table 1

Table 2

Table 3

These are the main subdivisions of machine language pro-
grams. If you use this structure, you will find that it simplifies
locating the different parts of a program, and it also prevents
nonprogram data (such as tables, messages, definitions) from
getting mixed in with the program code proper. LADS is de-
signed using this nearly universal format. Since all but the
shortest programs will have defined variables, initialization, a
main loop, a cluster of subroutines, and, finally, a collection of
data tables, why not organize all your programs in this simple,
straightforward, and sensible way?

Try typing in the source code in Program 8-1 and assem-
bling it with LADS. (Refer to Appendix B for instructions on
using LADS.) As mentioned earlier, because of the length of
the source code, you'll need to save it on disk and use
DISKLADS. After you've assembled the source code, you'll
need to BLOAD the object file created during the assembly.
Next, load the BASIC program you wish to search and add
line number 0 containing the word or words you want to
seach for. Then use SYS 2816 to activate the program; that’s
where it sits in RAM.

As your skills improve, you will likely begin to appreciate,
and finally embrace, the extraordinary freedom that ML con-
fers on the programmer.

At first, learning ML can seem fraught with apparently
endless obscure tricks and rules. It can even seem menacing,
beyond your understanding. It’s this way with every new lan-
guage because the words are still new, still odd. ,

Everyone passes through this (surprisingly brief) sense of
dread. Once you know how to tell your computer, directly in
its language, how to print something on the screen, you don’t
need to relearn this trick. Things fall into place. It won’t take
as long as it might now seem for you to begin to grasp the rel-
atively few novelties of machine language programming. ML
isn’t the theory of relativity; it’s no more difficult than BASIC.
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It’s just a new vocabulary for the same programming tech-
niques you’ve been using with BASIC.

And this brief sensation, this brief confusion, is a very
small price to pay for the flights you will soon be taking
through your computer. Work at it. Try things. Learn how to
find your errors. It’s not circular—there will be steady ad-
vances in your understanding. One day soon, you'll be able to
easily turbocharge your BASIC programs with ML, to write
convenient, custom utilities like our search routine, and to do
pretty much anything you could want to do with your
machine.
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ML Equivalents of BASIC
Commands

What follows is a small dictionary, arranged alphabetically, of
the major BASIC commands. If you need to accomplish some-
thing in ML—TAB, for example—Ilook it up in this chapter to
see one way of doing it in ML. Often, because ML is so much
freer than BASIC, there will be several ways to go about a
given task.

Of these choices, one might work faster, one might take
up less memory, and one might be easier to program and
understand. For this chapter, example routines were selected
to favor those which are easier to program and understand.

At ML’s extraordinary speeds, and with the large amounts
of RAM memory available to today’s computerists, it will be
rare that you will need to opt for velocity or memory
efficiency.

CLR

In BASIC, this clears all variables. Its primary effect is to reset
pointers. It is a somewhat abbreviated form of NEW since it
does not “blank out”” your program as NEW does.

CLR, in fact, is rarely used.

We might think of CLR, in ML, as the initialization phase
of a program which erases (fills with zeros) the memory loca-
tions you've set aside to hold your ML flags, pointers,
counters, and so on. You can see an example of this in the
LADS source code in Eval between lines 30 and 70 (Appendix
D).

Before an ML program runs, you will usually want to be
sure that some of its variables are set to zero. If they are in
different places in memory, you will need to zero them
individually:

2000 LDA #8$0

2002 STA $1990 Put zero into one of the “variables.”

2005 STA $1994 Continue putting zero into each byte which
needs to be initialized.
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CONT

On the other hand, if you’ve put all your variables to-
gether at the end, the job is easy: Just loop through the lis:,
putting zero in each variable. BASIC sets up a group of its
variables (pointers) in zero page, so you can use a loop to zero
them out:

2000 LDA #8$0

2002 LDY #$0F Y will be the counter. There are 15 bytes to zero
out in this example.

2004 STA $199,Y The highest of the 15 bytes.

2007 DEY

2008 BNE $2004 LetY count down to zero, BNEing until Y is
zero, then the Branch if Not Equal will let the
program fall through to the next instruction at
$200A.

CONT

This BASIC command allows your program to pick up where
it left off after a STOP command. You might want to look at
STOP, below. In ML, you can’t usually get a running program
to stop with the RUN/STOP key. If you like, you could write
a subroutine which checks to see if a particular key is being
held down on the keyboard and, if it is, BRK:

3000 JSR S$FFE4; Routine to get the key currently pressed.

3003 BEQ 3000; If nothing is currently pressed, keep looking.

3005 CMP #13  This is the RETURN key on your machine, but
you’ll want CMP here to the value that appears
in the “currently pressed” byte for the key you
select as your “stop” key. It could be any key. If
you want to use A for your “stop” key, try

CMP #$41.
3007 BNE $300A If it’s not your target key, jump to RTS.
3009 BRK If it is the target, BRK...
300A RTS back to the routine which called this subroutine.

However, the above routine requires that some key be
pressed. It will keep branching back to 3000 until some key is
pressed. This is the kind of input you would use when you
printed a menu and wanted the program to pause until a
selection was made.

There is, however, a location in zero page, the byte at
$D4, which detects keypresses on the fly. You could LDA
$D4:CMP #10:BEQ FOUNDA (FOUNDA is your routine that
does something whenever the user presses the A). Notice that

158

L

(I N B I

—

[

-

[




=

DATA

]

N

]

]

| I B T

the code for the letter A has a value of ten here. Unlike a JSR
$FFE4, the value returned from location $D4 is not regular
ASCIL It’s a different code, the “keyboard matrix code,” and
there’s no use learning it or having a chart of it. Carriage re-
turn is 1, the letter A is 10; when no key is pressed, $D4 con-
tains an 88. If you need to know sometime what value will be
in $D4 for a particular keypress, just look at $D4 via BASIC
with this simple program:

10 PRINT PEEK(212);:GOTO 10

and then press the key you're interested in.

Now back to CONT, the matter at hand. The 8502 places
the program counter (plus two) on the stack after a BRK. A
close analogy to BASIC is the placement of BRK within ML
code to cause a halt to program execution. Then, after examin-
ing registers or variables or buffers (places that hold input or
output before it’s received or sent), you can restart your pro-
gram by using the monitor G (go) command. G is the equiva-
lent of CONT.

DATA

In BASIC, DATA announces that the items following the word
DATA are to be considered pieces of information (as opposed
to being thought of as parts of the program). That is, the pro-
gram will probably use this data, but the data elements are not
BASIC commands.

In ML, such a zone of “nonprogram” is called a table. It is
unique only in that the program counter never starts trying to
run through a table to carry out instructions. This never hap-
pens because you never transfer program control, using JMP,
JSR, or a branching instruction, to anything within a table.
(This is similar to the way that BASIC slides right over DATA
lines.) There are no meaningful instructions inside a table. To
see what a table looks like and what it does, see the Tables
subprogram in the LADS source code in Appendix D.

To keep things simple, tables of data are usually stored
together either above or below the program. Usually, tables
are stored above, at the very end of the ML program (see Fig-
ure 9-1).

Tables can hold messages that are to be printed to the
screen, hold variables, hold flags (temporary indicators), and
so on. If you disassemble your BASIC in ROM, you'll find the
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words STOP, RUN, LIST, and so forth, gathered together in a
table. You can suspect a data table when your disassembler
starts giving lots of ??? error messages. It cannot find groups of
meaningful opcodes within tables.

Figure 9-1. Typical ML Program Organization

DATA Bottom of Memory
INITIALIZATION |<«———— Start of ML Program

MAIN
LOOP

SUBROUTINES
DATA

DIM

With its automatic string handling, array management, and er-
ror messages, BASIC makes life easy for the programmer.

The price you pay for this hand holding is that it slows
down the program when it’s run. In ML, the DIMensioning of

space in memory for variables is not explicitly handled by the -

computer. You must make a note that you are setting aside
memory from $6000 to $6500, or whatever, to hold variables.
It helps to make a simple map of this “dimensioned”” memory
so that you know where permanent strings, constants, variable
strings, and variables, flags, and so on, are within the dimen-
sioned zone. Because this set-aside memory will not contain
meaningful ML instructions, it is generally placed at the end of
the actual ML program. With LADS, you can make Tables the
final file in your chain of files. That will automatically put the
tables at the end of your program proper. To define data
(string or numeric), you use the .BYTE instruction; .BYTE auto-
matically makes space, like DIM.
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END

A particular chunk of memory (where, and how much, is
up to you) is reserved; that’s all. You don’t write any instruc-
tions in 8502 ML to set aside the memory; you just start using
the .BYTE pseudo-op and it fills in your tables. That’s why it’s
best to place tables at the end of your program. This way,
they can be enlarged conveniently without affecting any other
part of the program.

END

There are several ways to make a graceful exit from ML pro-
grams. You can JMP to the “warm start” address ($4003). Or
you can go to the “cold start” address ($4000).

If you went into the ML from BASIC with a SYS, you can
return to BASIC with an RTS. Recall that every JSR matches
up with its own RTS. Every time you use a JSR, it shoves its
“return here” address onto the top of the stack. If the com-
puter finds another JSR (before any RTS), it will shove another
return address on top of the first one. So, after two JSRs, the
stack contains two return addresses. When the first RTS is en-
countered, the top return address is lifted from the stack and
put into the program counter so that the program returns con-
trol to the current instruction following the most recent JSR.

When the next RTS is encountered, it pulls its appropriate
return (waiting for it on the stack), and so on. The effect of a
SYS from BASIC is like a JSR from within ML. The return ad-
dress to the correct spot within BASIC is put on the stack. In
this way, if you are within ML and there is an RTS (without
any preceding JSR), what’s on the stack will be a return-to-
BASIC address left there by SYS when you first went into ML.

Another way to END is to put a BRK in your ML code.
This drops you into the machine’s monitor. Normally, you use
BRKSs during program debugging. When the program is finished,
though, you would not want this ungraceful exit any more
than you would want to end a BASIC program with STOP.

In fact, many ML programs, if they stand alone and are
not part of a larger BASIC program, never end at all. They are
an endless loop. The main loop just keeps cycling over and
over. A game will not end until you turn off the power. After
each game, you see the score and are asked to press a key
when you are ready for the next game. Arcade games which
cost a quarter will ask for another quarter, but they don’t end.
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They go into “attract mode.” The game graphics are left run-
ning onscreen to interest new customers.

An ML word processor will cycle through its main loop,
waiting for keys to be pressed, words to be written, format or
disk instructions to be given. Here, too, it is common to find
that the word processor takes over the machine, and you can-
not stop it without turning the computer off. Among other
things, such an endless loop protects software from being pi-
rated. Since it takes control of the machine, this makes it
harder for someone to save it or examine it once it’s in RAM?
Some such programs are “autobooting” in that they start
themselves running as soon as they are loaded into the
computer.

BASIC, itself an ML program, also loops endlessly until
you power down. When a program is running, all sorts of
things are happening. BASIC is an interpreter, which means
that it must look up each word (like INT) it comes across dur-
ing a RUN (interpreting, or translating, its meaning into ma-
chine-understandable JSRs). Then, BASIC executes the correct
sequence of ML actions from its collection of routines.

In contrast to BASIC RUNSs, BASIC spends 99 percent of
its time waiting for you to program with it. This waiting for
you to press keys is its endless loop, a tight, small loop
indeed.

It would look like our “which key is pressed?”” routine:
2000 LOOP LDA $D4; THE “WHICH KEY IS BEING

PRESSED” LOCATION
2002 CMP #88; IF 88, KEEP LOOPING
2004 BEQ LOOP

If there is an 88 in $D4, this means that no key has been
pressed. So, we keep looping until the value in address $D4 is
something other than 88. This setup is similar to INPUT in
BASIC because not only does it wait until a key is pressed, but
it also leaves a unique value of the key in the accumulator
when it’s finished.

FOR-NEXT

Everyone has had to use delay loops in BASIC (FORT =1
TO 1000: NEXT T) which are also tight loops, sometimes
called do-nothing loops because nothing happens between the
FOR and the NEXT except the passage of time. For example,
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FOR-NEXT

when you need to let the user read something on the screen,
it’s sometimes easier just to use a delay loop than to say,
“When finished reading, press any key.”

In any case, you'll need to use delay loops in ML just to
slow ML itself down. In a game, the ball can fly across the
screen. It can get so fast, in fact, that you can’t see it. It just
“appears’”’ when it bounces off a wall. And, of course, you'll
need to use loops in many other situations. Loops of all kinds
are fundamental programming techniques.

In ML, you don’t have that convenient little counter (T in
the BASIC FOR-NEXT example above) which decides when to
stop the loop. When T becomes 1000, go to the instructions
beyond the word NEXT. Again, you must set up and check
your counter variable by yourself.

If the loop is going to be smaller than 255 cycles, you can
use the X register as the counter—Y is saved for the very use-
ful indirect indexed addressing discussed in Chapter 4: LDA
(96),Y. Anyway, by using X, you can count to 200 by:

2000 LDX #200 (or $C8 hex)
2002 DEX
2003 BNE $2002

For loops involving counters larger than 255, you'll need
to use two bytes to count down, one going from 255 to 0 and
then clicking (like a gear) the other (more significant) byte.

To count to 512:

2000 LDA #$2

2002 STA $6000 Put the 2 into address 6000, our MSB, most
significant byte, counter.

2004 LDX #$0 Set X to 0 so that its first DEX will make it 255.
Further DEXs will count down again to 0, when
it will click the MSB down from 2 to 1 and then
finally to 0.

2006 DEX

2007 BNE $2006

2009 DEC $6000 Click the number in address 6000 down 1.

200B BNE $2006

Here we used the X register as the LSB (least significant
byte) and address 6000 as the MSB. Why use address 6000?
Why not? Use any RAM byte you want that won't interfere
with other things going on in the computer. In practice, you'll
want to set aside a byte in your Tables at the end of your ML
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program to be sure that it’s not going to interfere with some-
thing. See DATA above for a discussion of Tables.

We could use addresses $FA and $FB to hold the MSB/LSB
if we wanted. This is commonly useful because then address
$FA (or some available, two-byte space in zero page) can be
used for LDA ($FA),Y. You would print a message to the
screen using the combination of a zero page counter and LDA
(zero page address),Y.

FOR-NEXT-STEP
Here you would just increase your counter (usually X or Y)

more than once. To create FORI = 100 TO 1 STEP —2 you
could use:

2000 LDX #100
2002 DEX
2003 DEX
2004 BNE $2002

For larger numbers you create a counter which uses two
bytes, working together, to keep count of the events. Follow-
ing our example above for FOR-NEXT, we could translate FOR
I =512 TO 0 STEP —2:

200 2000 LDA #$2
210 2002 STA COUNTER This is going to hold our MSB.

220 2004 LDX #$0 X is holding our LSB.

230 2006 DEX

240 2007 DEX Here we click X down a second time,
for —2.

250 2008 BNE $2006
260 200A DEC COUNTER
270 200c BNE $2006

400 COUNTER .BYTE 0; A single byte set aside in our Tables

(In this example, we’ve shown how you would create
LADS source code to set aside a COUNTER byte above the
main code. However, the addresses of this code, 2000-200C,
are not known when you write source code. They are created
after you activate LADS. They're here just for illustrative pur-
poses. You don’t type in addresses when writing source code for
LADS.

Tc)) count up, use the CoMPare instruction. FOR I = 1 TO
50 STEP 3:
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2000 LDX #$0

2002 INX

2003 INX

2004 INX

2005 CPX #$50
2007 BNE $2002

For larger STEP sizes, you can use a nested loop within
the larger one. This would avoid a whole slew of INXs. To
write the ML equivalent of FOR I = 1 TO 50 STEP 10:

2000 LDX #$0

2002 LDY #$0

2004 INY

2005 CPY #$0A
2007 BNE $2004
2009 CPX #$32
200B BNE $2002

GET

Every computer must have that important ““which key is being
pressed?”” address, where it holds the value of a character
typed in from the keyboard. To GET, you create a very small
loop which tests this address. See a complete description of
this technique under CONT above.

GOSUB |

This is nearly identical to BASIC. Use JSR $NNNN and you
will go to a subroutine at address NNNN instead of a line
number as in BASIC. (NNNN just means that you can sub-
stitute any hex number for the NNNN that you want to. This
is a form of math shorthand.) LADS allows you to give labels,
names to JSR to, instead of addresses. A simple assembler like
the one in the monitor does not allow labels. You are respon-
sible (as with DATA tables, variables, and so on) for keeping a
list of your subroutine addresses and the parameters involved if
you're not using LADS.

Parameters are the number or numbers handed to a sub-
routine to give it information it needs. Quite often, BASIC
subroutines work with the variables already established within
the BASIC program. In ML, though, managing variables is up
to you. Subroutines are useful because they can perform tasks
repeatedly without needing to be written into the body of the
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program each time the task is to be carried out. Beyond this,
they can be generalized so that a single subroutine can act in a
variety of ways, depending upon the variable (the parameter)
which is passed to it.

A delay loop to slow up a program could be general in
the sense that the amount of delay is handed to the subroutine
each time. The delay can, in this way, be of differing dura-
tions, depending on what it gets as a parameter from the main
routine.

Let’s say that we've decided to use address $40 to pass
parameters to subroutines. We could pass a delay of five cy-
cles of the loop by:

2000 LDA #$5
The Main Program 2002 STA $40
2004 JSR $5000

5000 DEC $40

5002 BEQ $500C If address $40 has counted
all the way down from 5
to 0, RTS back to the main
program.

5004 LDY #$0

5006 DEY

The Subroutine 5007 BNE $5006
5009 JMP $5000
500C RTS

A delay which lasted twice as long as the above would
merely require a single change to the calling routine: 2000
LDA #$0A.

GOTO |
In ML, it’s JMP. JMP is like JSR, except the address you leap
away from is not saved anywhere. You jump, but cannot use
an RTS to find your way back.

There are two basic kinds of branching in computing. A
conditional branch would be CMP #0:BEQ 5000. The condition
of equality is tested by BEQ, Branch if EQual. BNE tests a con-
dition of inequality, Branch if Not Equal. Likewise, BCC
(Branch if Carry is Clear) and the rest of these branches are
testing conditions within the program.
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GOTO

GOTO and JMP do not depend on any conditions within
the program, so they are unconditional branches. The question
arises when you use a GOTO: Why did you write a part of
your program that you must always (unconditionally) jump
over? GOTO and JMP are sometimes used to patch up a pro-
gram, but used without restraint, they can make your program
hard to understand later. On the other hand, JMP can many
times be the best solution to a programming problem. In fact,
it is hard to imagine ML programming without it.

One additional note about JMP: It makes a program
nonrelocatable. If you later need to move your whole ML pro-
gram to a different part of memory, all the JMPs (and JSRs)
need to be checked to see if they are pointing to addresses
which are no longer correct. (JMP or JSR into your BASIC
ROMs will still be the same, but not those which are targeted
to addresses within the ML program.)

2000 JMP $2005
2003 LDY #$3
2005 LDA #$5

If you moved this little program up to $5000, everything
would survive intact and work correctly except the JMP $2005.
It would still say to jump to $2005, but it should say to jump
to $5005, after the move. You have to go through with a dis-
assembly and check for all these incorrect JMPs. To make your
programs more “relocatable,” you can use a special trick with
unconditional branching which will move without needing to
be fixed:

2000 LDY #$0
2002 BEQ $2005 Since we just loaded Y with a zero, this Branch
if EQual to zero instruction will always be true
and cause a pseudo-JMP.
2004 NOP
2005 LDA
#$5

Your monitor includes a “moveit” routine, invoked with T
(Transfer), which will take an ML program and relocate it
somewhere else in memory for you. You can go into the mon-
itor and type T 2000 2006 5000 (you give the monitor these
numbers in hex). The third number is the target address. The
first and second are the start and end of the program you
want to move.
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The best solution to relocatability, however, is LADS.
With it, you never JMP to actual addresses; rather, you JMP or
JSR or branch to labels. This way, relocating your program
couldn’t be simpler. You just change the start address with *=
and reassemble. Everything is taken care of and the program
reassembles to the new location flawlessly. With LADS, the
example above is written like this:

100 JMP NEXTROUTINE
110 LDY #3
120 NEXTROUTINE LDA #5

(The numbers at the left are not addresses; they are line
numbers for your convenience when writing the program, and
they have no effect on the resulting ML code after assembly.)

IF-THEN

This familiar and fundamental computing structure is accom-
plished in ML with the combination CMP-BNE or any other
conditional branch: BEQ, BCC, and so forth. Sometimes, the IF
half isn’t even necessary. Here’s how it would look:

2000 LDA $57  What's in address $57?

2002 CMP #$0F Is it $OF, 15 decimal?

2004 BEQ $200D IF it is, branch up to $200D.

2006 LDA #$0A Or ELSE, put a $0A, 10 decimal, into address
$57.

2008 STA $57

200A JMP $2011 And jump over the THEN part.

200D LDA #$14 THEN, put a $14, 20 decimal, into address $57.

200F STA $57

2011 Continue with the program....

Often, though, your flags are already set by an action,
making the CMP unnecessary. For example, if you want to
branch to $200D if the number in address $57 is zero, just
LDA $57:BEQ $200D. This works because the act of loading
the accumulator will affect the status register flags. You don't
need to CMP #0 because the zero flag will be set if a zero was
just loaded into the accumulator. It won't hurt anything to use
a CMP, but you'll find many cases in ML programming where
you can shorten and simplify your coding if you wish to. As
you gain experience, you will see these patterns and learn
what affects the status register flags.
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INPUT

This is a series of GETs, echoed to the screen as they are
typed in, which end when the typist hits the RETURN key.
The reason for the echo (the symbol for each key typed is re-
produced on the screen) is that few people enjoy typing with-
out seeing what they’ve typed. This also allows for error cor-
rection using cursor control keys or DELETE and INSERT keys.

To handle all of these actions, an INPUT routine must be
fairly complicated. We don’t want, for example, the DELETE
to become a character within the string. We want it to act im-
mediately on the string being entered during the INPUT, to
erase a mistake.

Our INPUT routine must also be smart enough to know
what to add to the string and what keys are intended only to
modify it. Here is the basis for constructing your own ML IN-
PUT. It simply receives a character from the keyboard, prints
it to the screen, and ends when the RETURN key is pressed.
We'll write this INPUT as a subroutine. That simply means
that when the 13 (ASCII for carriage return) is encountered,
we’ll perform an RTS back to a point just following the main
program address which JSRed to our INPUT routine. Let’s do
it in the LADS source code format, with line numbers instead
of addresses:

10 *= $B00

20 .S

30.0

40 LOOP JSR $FFE4:BEQ

LOOP; If we got a zero, no key had been
pressed

50 JSR $FFD2; Print the character to the screen

60 CMP #13; Is it a carriage return

70 BNE LOOP; If not, return for more keypresses

80 RTS; Otherwise return to the calling
routine

If you try this out, you'll notice that even the cursor keys
and delete, screen clear, and so forth, work correctly. This is
because when you JSR $FFD2 (PRINT), it is just as if you
printed any character from BASIC (with cursor control codes
embedded in a string). This INPUT could be, however, much
more complex. As it stands, it will hold the string on the
screen only. To save the string, you would need to store it in
some buffer of yours in addition to its appearance on the
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screen. However, if you're going to store the string into some
safe location where you are keeping string variables, you’'ll
need to refuse storage to such things as the delete character or
your stored string will be corrupted (will include delete) if the
user needs to correct a misspelling. Or you might want to pre-
vent the user from hitting a key like carriage return. In that
case, just CMP #13:BEQ LOOP so that nothing is echoed to
the screen or stored in your string when the user trys to enter
that particular key.

The great freedom you have with ML is that you can re-
define anything you want. You can softkey: define a key’s
meaning via software; have any key perform any task you
want. You might even decide to use the $ key to DELETE.

Along with this freedom goes the responsibility for
organizing, writing, and debugging these routines.

LET

Although this word is still available on most BASICs, it is a
holdover from the early days of computing. It is supposed to
remind you that statements like LET NAME = NAME + 4 is
an assignment of a value to a variable, not an algebraic equa-
tion. The two numbers on either side of the equal sign, in
BASIC, are not intended to be equal in the algebraic sense.
Most people write NAME = NAME + 4 without using LET.
The function of LET applies, though, to ML as well as to
BASIC: We must assign values to variables.

In the 128, for example, where the RAM bank can change
depending on how you configure the computer, there has to
be a place where we can find out which bank is the current
bank (it's address $FF00). Likewise, a program will sometimes
require that you assign meanings to string variables, counters,
and the like. This can be part of the initialization process, the
tasks performed before the real program, your main routine,
gets started. Or it can happen during the execution of the
main loop. In either case, there has to be an ML way to estab-
lish, to assign, variables. This also means that you must have
zones of memory set aside to hold these variables unless, like
the bank-switching location, the computer has already defined
a variable. Normally, you will store your variables as a group
at the end of an ML program.

For strings, you can think of LET as the establishment of
a location in memory. In our INPUT example above, we might

170

IR N I I

[

(.

(_

(-



I I

1

N

I R R

LET

have included an instruction which would have sent the
characters from the keyboard to a table of strings as well as
echoing them to the screen. If so, there would have to be a
way of managing these strings. For a discussion on the two
most common ways of dealing with strings in ML, see Chapter
6 under the subhead “Dealing with Strings.”

In general, you will probably find that you program in
ML using somewhat fewer variables than in BASIC. There are
three reasons for this:

1. You will probably not write many programs in ML like
databases where you manipulate hundreds of names, ad-
dresses, and so forth. It might be somewhat inefficient to
create an entire database management program, an in-
ventory program for example, in ML. Keeping track of the
variables would require careful programming. (For an ex-
ample database manager, see LADS’s Equate and Array
subprograms, Appendix D.)

The value of ML is its speed of execution, but its
drawback is that it requires more precise programming and,
at least for beginners, can take more time to write. So, for
an inventory program, you could write the bulk of the pro-
gram in BASIC and simply attach ML routines for sorting
and searching tasks within the program.

2. The variables in ML are often handled within a series of
instructions (not held elsewhere as BASIC variables are).
FOR T = 1 TO 10 : NEXT I becomes LDY #1:INY:CPY
#10:BNE.

Here, the BASIC variable is counted for you and
stored outside the body of the program. The ML “variable,”
though, is counted by the program itself. ML has no inter-
preter which handles such things. If you want a loop, you
must construct all of its components yourself.

3. In BASIC, it is tempting to assign values to variables at the
start of the program and then to refer to them later by their
variable names, as in 10 BALL = 79. Then, anytime you
want to PRINT the BALL to the screen, you could say, ~
PRINT CHR$(BALL). Alternatively, you might define it this
way in BASIC: 10 BALL$ = “O”. In either case, your pro-
gram will later refer to the word BALL. In this example we
are assuming that the number 207 will place a ball charac-
ter on your screen (the letter O).
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In ML we can use variable names precisely the same way
if we are programming with an advanced assembler like
LADS. However, with an elementary assembler like the one in
the monitor, you will just LDA #207, STA (screen position)
each time. Some people like to put the 207 into their zone of
variables (that arbitrary area of memory set up at the end of a
program to hold tables, counters, and important addresses).
They can pull it out of that zone whenever it's needed. That is
somewhat cumbersome, though, and slower. You would LDA
1015, STA (screen position), assuming you had put a 207 into
this “ball” address, 1015, earlier.

Obviously, a value like BALL will always remain the same
throughout a program. The ball will look like a ball in your
game, whatever else happens. So, it’s not a true variable; it
does not vary. It is constant. A true variable must be located in
your ““zone of variables,” your variable table.

It cannot be part of the body of your program itself (as in
LDA #207) because it will change. You don’t know when writ-
ing your program what the variable will be. So you can’t use
immediate mode addressing because it might not be a #207.
You have to LDA 1015 from within your table of variables.

Elsewhere in the program you have one or more STA
1015 or INC 1015 or some other manipulation of this address
which keeps updating this variable. In effect, ML makes you
responsible for setting aside areas which are safe to hold vari-
ables if you are using the monitor assembler. What’s more,
you have to remember the addresses and update the variables
in those addresses whenever necessary. This is why it is so
useful to keep a piece of paper next to you when you are writ-
ing ML using the monitor. The paper lists the start and end
addresses of the zone of variables, the table. You write down
the specific address of each variable as you write your pro-
gram. LADS, of course, makes variable zones and names auto-
matic with the .BYTE pseudo-op. See LADS’s Tables sub-
program (Appendix D) to see how variables (and constants)
can be handled efficiently.

LIST

This is done via a disassembler. It will not have line numbers
(though, again, advanced assembler packages like LADS do
have line numbers). You will see the address of each instruc-
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tion in memory. You can look over your work and plan debug-
ging strategies, where to set BRKs into problem areas, and so on.

The most common way to list and check your work, how-
ever, is to read over the source code. This does not require a
disassembler. You write LADS source code as if it were a
BASIC program and, thus, can LIST it and modify it as if it
were a BASIC program. There is a subtle difference between
studying source code and studying object code (via dis-
assembly). The former is most useful for making modifications
and for locating the more obvious bugs. The latter is for pa-
tiently tracking down those last few stubborn bugs that no
amount of reading over the source code will reveal.

LOAD

The method of saving and loading an ML program varies from
computer to computer. You have two options: loading from
within the monitor or from BASIC. When you finish working
on a program, or a piece of a program, on the mini-assembler,
you will know the starting and ending addresses of your
work. Using these, you can save to disk or tape using the S
monitor command (described in Chapter 3). To load, the sim-
plest way is just to L “FILENAME",1 (for tape) or ,8 (for disk).
You can also load ML when you're in BASIC mode by
BLOAD. With both the monitor’s L and BASIC’s BLOAD com-
mands, you can reassign your ML routine to a different target
address (see your manual). However, this will not adjust the
JSRs, and so on, so you haven't really relocated the program,
and it probably would not run at the new location. To truly
relocate it, you need to change the start address *= and re-
assemble it with LADS. However, loading in a version of your
ML program to a different location with the L command and
then loading in another version in its normal location does
allow you to compare them with the monitor’s C command.

To see how to save and load from within your ML pro-
grams, to write ML which itself saves and loads files, please
refer to the Openl subprogram of LADS in Appendix D.

NEW

In Microsoft BASIC, this has the effect of resetting some point-
ers which make the machine think that you are going to start
over again. The next program line you type in will be put at
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the “start-of-a-BASIC-program’ area of memory. Some
computers, the Atari for example, even wash memory by fill-
ing it with zeros. There is no special command in ML for
NEWing an area of memory, though the monitor has a “fill
memory’’ option which will fill an area of memory as large as
you want with whatever value you choose.

The reason that NEW is not found in ML is that you do
not always write your programs in the same area of memory
as you do in BASIC, building up from some predictable ad-
dress. You might have a subroutine floating up in high mem-
ory, another way down low, your table of variables at the end,
and your main program in the middle. Or you might not.
We've been using $2000 as our starting address for many of
the examples in this book and $5000 for subroutines, but this
is entirely arbitrary.

To “NEW” in ML, just start assembling over the old

program.
' Alternatively, you could just turn the power off and then
back on again. This would, however, have the disadvantage of
wiping out LADS along with your program.

ON-GOSUB

In BASIC, you are expecting to test values from among a
group of numbers: 1, 2, 3, 4, 5, .... The value of X must fall
within this narrow range: ON X GOSUB 100, 200, 300, ... (X
must be 1 or 2 or 3 here). In other words, you could not
conveniently test for widely separated values of X (18, 55,
220). There is also an improved form of ON-GOSUB where
you can test for any values. If your computer were testing the
temperature of your bath water:

CASE
80 OF GOSUB HOT ENDOF
100 OF GOSUB VERYHOT ENDOF
120 OF GOSUB INTOLERABLE ENDOF
ENDCASE

ML permits you the greater freedom of the CASE struc-
ture. Using CMP, you can perform a multiple branch test:

2000 LDA $96 Get a value, perhaps input from the keyboard.

2002 CMP #$50 Decimal 80

2004 BNE $2009

2006 JSR $5000 Where you would print “hot,” following our ex-
ample of CASE.
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ON-GOTO

2009 CMP #$64 Decimal 100

200B BNE $2011

200D JSR $5020 Print “very hot”
2010 CMP #$78 Decimal 120

2012 BNE $2017

2014 JSR $5030 Print “intolerable”

This illustrates one way that bugs get into ML—Dby not
cleanly entering and leaving subroutines. The potential prob-
lem here is triggering the CMPs more than once. Since you are
JSRing and then will be RTSing back to within the multiple
branch test above, you will have to be sure that the subroutines
up at $5000 do not change the value of the accumulator. If the
accumulator started out with a value of $50 and, somehow,
the subroutine at $5000 left a $64 in the accumulator, you
would print “hot” and then also print “very hot.” One way
around this would be to put a zero into the accumulator
before returning from each of the subroutines (LDA #$0). This
assumes that none of your tests, none of your cases, responds
to a zero. ®

ON-GOTO

This is more common in ML than the ON-GOSUB structure
above. It eliminates the need to worry about what is in the
accumulator when you return from the subroutines. Instead of
RTSing back, you jump back, following all the branch tests.

2000 LDA $96

2002 CMP #$50

2004 BNE $2009

2006 JMP $5000 Print “hot”

2009 CMP #$64

200B BNE $2010

200D JMP $5020 Print “very hot”

2010 CMP #$78

2012 BNE $2017

2014 JMP $5030 Print “intolerable”

2017 All the subroutines JMP $2017 when they
finish.

Instead of RTS, each of the subroutines will JMP back to
$2017, which lets the program continue without accidentally
“triggering’’ one of the other tests with something left in the
accumulator during the execution of one of the subroutines.
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PRINT

You could print out a message in the following way:

2000 LDY #$0

2002 LDA #72 The letter H
2004 STA $0400,Y An address on the screen
2007 INY

2008 LDA #69 The letter E
200A STA $0400,Y

200D INY

200E LDA #76 The letter L
2010 STA $0400,Y

2013 INY

2014 LDA #76 The letter L
2016 STA $0400,Y

2019 INY

201A LDA #79 The letter O
201C STA $0400,Y

But this is clearly a clumsy, memory-hungry way to go
about it. In fact, it would be absurd to print out a long mes-
sage this way. The most common ML method involves putting
message strings into a data table and ending each message
with a zero. Zero is never a printing character in computers; to
print the number zero, you use 176: LDA #$30, STA $0400.
So, true zero (not the code for the character 0) can be used as
a delimiter to let the printing routine know that you've fin-
ished the message. In a data table, we first put in the message
“hello”:

1000 $48
1001 $45
1002 $4C
1003 $4C
1004 $4F
1005 $00
1006 $48
1007 $49 I Another message
1008 $0 Another delimiter

Such a message table can be as long as you need; it holds
all your messages and they can be used again and again:

2000 LDY #$0

2002 LDA $1000,Y

2005 BEQ $200F If the zero flag is set, it must mean that we've
reached the delimiter, so we branch out of this
printing routine.

The delimiter

m oorrmm
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PRINT
2007 STA $0400,Y Put it on the screen.
200A INY
200B JMP $2002 Go back and get the next letter in the message.
200F Continue with the program.

Had we wanted to print HI, the only change necessary
would have been to put $1006 into the LDA at address $2003.
To change the location on the screen that the message starts
printing, we could just put some other address into $2008.
The message table, then, is just a mass of words, separated by
zeros, in RAM memory.

The process of printing messages is even simpler using
the LADS label-based assembler and its .BYTE trick for storing
numbers or words:

10 SCREEN = $0400
100 LDY #0:MORE LDA MESSAGE,Y:BEQ FINISH
110 STA SCREEN,Y:INY:]MP MORE

with, at the end of your source code, the following line in-
cluded somewhere in your table of variables, your data:

400 MESSAGE .BYTE “HELLO":..BYTE 0
410 MESSAGE1 .BYTE “HI":.BYTE 0

See the Tables section of LADS (Appendix D) for more
examples of message storage.

The fastest way to print to the screen, especially if your
program will be doing a lot of printing, is to create a sub-
routine which will print any of your messages. It can use some
bytes in zero page (addresses 0-255) to hold the location of
the message within your table of data.

To put an address into zero page, you will need to put it
into two bytes. Addresses are too big to fit into one byte. With
LADS, you can use the #< and #> pseudo-ops to extract the
LSB and MSB of a label and thus store the address of your
message into a zero page pointer:

10 MSGADDRESS = 56
20 SCREEN = $0400 '
100 LDA #<MESSAGE:STA MSGADDRESS; set up pointer
110 LDA #>MESSAGE:STA MSGADDRESS+1
120 JSR PRINTMSG; go to universal print subroutine
500 PRINTMSG LDY #0:LOOP LDA (MSGADDRESS),Y:BEQ
END:STA SCREEN,Y
510 STA SCREEN, Y:INY:JMP LOOP
520 END RTS

177



PRINT

This same trick can be done with the simple assembler in the
monitor, but it is more cumbersome.

First, you split the hex number in two. The left two digits,
$10, are the MSB (most significant byte) and the right digits,
$00, make up the LSB (least significant byte). If you are going
to put this target address into zero page at 56 (decimal):

2000 LDA #$00 LSB

2002 STA $56

2004 LDA #$10 MSB

2006 STA $57

2008 JSR $5000 Printout subroutine

5000 LDY #$0

5002 LDA ($56)Y

5004 BEQ $5013 If zero, return from subroutine...
5006 STA $0400,Y to screen.

5009 INY

500A JMP $5002

500D RTS

One drawback to this PRINT subroutine we’ve con-
structed is that it will always print any messages to the same

place on the screen. That $0400 is frozen into your subroutine.

Solution? Use another zero page pair of bytes to hold the
screen address. Then, your calling routine sets up the message
address as above, but also goes on to specify a screen address
as well.

The 128's screen starts at $0400 (1024 decimal), so you
will want to put 0 and 4 into the LSB and MSB respectively
for your screen pointer.

2000 LDA #$00 LSB

2002 STA $56 Set up message address
2004 LDA #$10 MSB

2006 STA $57

2008 LDA #$0 LSB

200A STA $58 We'll just use the next two bytes in zero page
above our message address for the screen
address.

200C LDA #$4 MSB

200E STA $59

2010 JSR $5000

5000 LDY #$0

5002 LDA ($56)Y

5004 BEQ $500D If zero, return from subroutine...
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REM

5006 STA ($58),Y to screen.
5009 INY

500A JMP $5002

500D RTS

The easiest way to print messages to particular places on
the screen, however, is to use the 128’s built-in BASIC PRINT
routine to send the characters, one by one, each to the next
cursor position onscreen. The built-in routine updates and
keeps track of the current cursor position for you. So, you can
get around having to keep a screen pointer in zero page this
way. In the example immediately above, just replace line 5006
with JSR $FFD2 (the 128’s PRINT routine) and remove lines
2008-200E.

READ

There is no reason for a reading of data in ML. Variables are
not placed into “DATA statements.” They are entered into a
table when you are programming. The purpose of READ, in
BASIC, is to assign variable names to raw data, or to take a
group of data and move it somewhere, or to manipulate it into
an array of variables. These things are handled by you, not by
the computer, in ML programming.

If you need to access a piece of information, you set up
the addresses of the datum and the target address to which
you are moving it. (See the PRINT routines above.) As always,
in ML you are expected to keep track of the locations of your
variables. If you are using the simple assembler in the mon-
itor, you must keep a map of data locations, vectors, tables,
and subroutine locations. This pad of paper is always next to
you as you program in ML. It would seem that you would
need many notes, but in practice an average program of, say,
1000 bytes could be mapped out and commented on, using
only one sheet.

Alternatively, with more sophisticated assemblers like
LADS, the labels themselves within the program will keep
track of things for you, and embedded comments serve to re-
mind you of the use and function of all data.

REM

You do this on a pad of paper, too, when working with a sim-
ple assembler. If you want to comment or make notes about

179



RETURN

your program (and it can be a necessary, valuable explanation
of what’s going on), you can disassemble some ML code like a
BASIC listing. If you have a printer, you can make notes on
the printed disassembly. If you don’t use a printer, make notes
on your pad to explain the purpose of each subroutine, the
parameters it expects to get, and the results or changes it
effects.

The more sophisticated assemblers like LADS will permit
comments within the source code. As you program, you can
include REMarks by typing a semicolon, which is a signal to
the assembler to ignore the REMarks when it is assembling
your program. In these assemblers, you are working much
closer to the way you work in BASIC. Your REMarks remain
part of the source program, and can be listed out and studied.

RETURN

RTS works the same way that RETURN does in BASIC: It
takes you back to just after the JSR (GOSUB) that sent control
of the program away from the main program and into a sub-
routine. JSR pushes, onto the stack, the address which im-
mediately follows the JSR itself. That address, then, sits on the
stack, waiting until the next RTS is encountered. When an
RTS occurs, the address is pulled from the stack and placed
into the program counter. This has the effect of transferring
program control back to the instruction just after the JSR.

RUN

There are several ways to start an ML program. If you are tak-
ing off into ML from BASIC, you just SYS to it by giving its
address (in decimal) as the argument of the SYS. This acts just
like JSR and will return control to BASIC, just as RETURN
would, when there is an unmatched RTS in the ML program.
By unmatched, we mean the first RTS which is not part of a
JSR/RTS pair. SYS can take you into ML either in immediate
mode (directly from the keyboard) or from within a BASIC
program as one of the BASIC commands.

If you need to “pass” information from BASIC to ML, it is
easiest to use integer numbers and just POKE them into some
predetermined ML variable zone that you've set aside and
noted on your notepad. Then just SYS to your ML routine,
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STOP

which will look into the set-aside, POKEd area when it needs
the values from BASIC.

If you are not going between BASIC and ML, you can
start (RUN) your ML program from within the built-in mon-
itor. To enter the monitor, press F8. To run an ML program
from within the monitor, type G 2000 (that’s address 8192 in
decimal; this presumes that you’'ve either loaded in your ML
program at that address or have just assembled one there).

The 128 expects to encounter a BRK instruction to end the
run and return control to the monitor.

SAVE

When you save a BASIC program, the computer automatically
handles it. The starting address and the ending address of
your program are calculated for you. In ML, you must know
the start and end address. From the monitor, you type S, then
the name of your program, then 8 for disk or 1 for tape, the
starting address, and the ending address. All these items are
separated by commas:

S “FILENAME”,8,2000,2010

(Note that these addresses are in hex. The addresses are 8192
and 8208, in decimal, but you must use hex from the monitor
unless you specify otherwise. See Chapter 3 for more infor-
mation about the monitor.) For more information about BSAVE
and BLOAD, the ML save and load routines in BASIC, please
see your User’s Guide.

Saving object code is automatic with LADS; if you use the
.D NAME pseudo-op, LADS will automatically save your ML
program after it has finished assembling it. To see how to save
and load from within your ML programs—to write ML which
itself saves and loads files—please refer to the Openl sub-
program of LADS in Appendix D.

STOP

BRK (or an RTS with no preceding JSR) throws you back into
the monitor mode after running an ML program. BRK is most
often used for debugging programs because you can set
“breakpoints” in the same way that you would use STOP to
examine variables when debugging a BASIC program.
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SYS

This is BASIC’s way of using a piece of ML code, an ML rou-
tine, as a subroutine. The only difference between SYS and
GOSUEB is that the computer is alerted to the fact that it needs
to switch mental gears: The next series of instructions will be
ML. In other words, the computer shouldn’t try to interpret
what it finds at the SYS address as more BASIC instructions.
Later, when it comes upon an RTS instruction in the ML pro-
gram which was not matched by a previous JSR instruction, it
will then revert to the BASIC program and pick up where it
left off, following the SYS instruction.

There are times when you want to write in ML and use it
as a subroutine for a BASIC program. This can greatly speed
up the execution of the BASIC program. To put an ML pro-
gram in RAM where it will be safe from BASIC’s dynamic
variable storage (where it won't be overwritten by BASIC),
you lower the ““top-of-memory” pointer ($39,3A) to create
some space in high RAM of which the computer is “un-
aware.” This pointer contains the address (in the usual
LSB,MSB format discussed earlier) beyond which BASIC is
forbidden to intrude. If you're going to use only one page of
memory (256 bytes), just DEC #3A which has the effect of
making it point 256 bytes lower than it normally would. This
pointer affects bank 1.

After resetting this pointer, you are free to load in your
ML program into the now-safe RAM between where the
pointer points and the true highest RAM byte in your
computer.

Short ML routines can always be stored in the page be-
tween $B00 and $BFF without any special preliminaries.

String Handling

ASC

In BASIC, this will give you the number of the ASCII code
which stands for the character you are testing. ?ASC(”A”") will
result in a 65 being displayed. There is never any need for this
in ML. If you are manipulating the character A in ML, you are
using ASCII already. In other words, the letter A is 65 in ML
programming. The Commodore ASCII code isn’t standard
ASCII; it stores character symbols in some nonstandard ways,
so you will need to write a special program to be able to

182

I N

[

[

[

- L

[




1

LEN

]

]

]

)

]

y—

B

.

]

translate to standard ASCII if you are using a modem or some
other peripheral which uses true ASCII. Appendix G lists both
Commodore ASCII and true ASCII.

CHR$

This is most useful in BASIC to let you use characters which
cannot be represented within normal strings, will not show up
on your screen, or cannot be typed from the keyboard.

For example, if you have a printer attached to your com-
puter, you could send CHR$(13) to it, and it would perform a
carriage return. The correct numbers which accomplish various
things sometimes differ, though decimal 13—an ASCII code
standard—is nearly universally recognized as carriage return,
and the 128 uses this convention, too.

Or, you could send the combination CHR$(27) CHR$(8),
and the printer would backspace.

There is no real use for CHR$ within ML. If you want to
specify a carriage return, just LDA #13. In ML, you are not
limited to the character values which can appear onscreen or
within strings. Any value can be dealt with directly.

LEFT$

As usual in ML, you are in charge of manipulating data. Here’s
one way to extract a certain “substring” from the left side of a
string as in the BASIC statement LEFT$(X$,5):

2000 LDY #8$5

2002 LDX #$0 Use X as the offset for buffer storage.

2004 LDA $1000,Y The location of X$.

2007 STA $4000,X The “buffer,” or temporary storage area, for
the substring.

200A INX

200B DEY

200C BNE $2004

LEN

In some cases, you will already know the length of a string in
ML. One of the ways to store and manipulate strings is to
know beforehand the length and address of a string. Then you
could use the subroutine given for LEFT$, above. More com-
monly, though, you will store your strings with delimiters (ze-
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ros) at the end of each striné. To find out the length of a

certain string:
2000 LDY #$0

2002 LDA $1000,Y The address of the string you are testing.

2003 BEQ $2009

2005 INY
2006 BNE $2002

2008 BRK

2009 DEY

Remember, if you LDA a zero, the zero flag is
set. So you don't really need to use a CMP #0
here to test whether you've loaded the zero
delimiter.

We are not using a JMP here because we as-
sume that all your strings are less than 256
characters long.

If we still haven’t found a zero after 256 INYs,
we avoid an endless loop by just BRKing out
of the subroutine.

The LENgth of the string is now in the Y
register.

We had to DEY at the end because the final INY picked
up the zero delimiter. So, the true count of the LENgth of the
string is one less than Y shows, and we must DEY one time to
make this adjustment.

MID$

To extract a substring which starts at the fourth character from
within the string and is five characters long—MID$(X$,4,5):

2000 LDY #$5
2002 LDX #$0
2004 LDA $1003,Y

2007 STA $4000,X
200A INX

200B DEY

200C BNE $2004

RIGHT$

The size of the substring we're after.

X is the offset for storing the substring.

To start at the fourth character from within the
X$ located at $1000, simply add three to that
address. Instead of starting our LDA,Y at
$1000, skip to $1003. This is because the first
character is not in position 1. Rather, it is at
the zeroth position, at $1000.

The temporary buffer to hold the substring.

This, too, is complicated because normally we do not know
the LENgth of a given string. To find RIGHT$(X$,5) if X$
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starts at $1000, we should find the LEN first and then move
the substring to our holding zone (buffer) at $4000:

2000 LDY #8$0

2002 LDX #8$0

2004 LDA $1000,Y

2007 BEQ $200D The delimiting zero is found.

2009 INY

200A JMP $2004

200D TYA Put LEN into A so that we can subtract the
substring size from it.

200E SEC Always set carry before any subtraction.

200F SBC #$5 Subtract the size of the substring you want to
extract.

2011 TAY Put the offset back into Y, now adjusted to

point to five characters from the end of X$.
2012 LDA $1000,Y
2015 BEQ $201E We found the delimiter, so end.
2017 STA $4000,X
201A INX
201B DEY
201C BNE $2012
201E RTS

TAB

This formatting instruction moves you to a specified column
on a given line. TAB 10 moves you ten spaces from the left
side of the screen.

In ML, you have more direct control over what happens:
You would just add or subtract the amount you want to TAB
over to. If you were printing to the screen and wanted ten
spaces between A and B so it looked like this:

A B
you could write:

2000 LDA #$41 A

2002 STA $0400 Screen RAM address

2005 LDA #%$42 B

2007 STA $040A You've added ten to the target address.

Alternatively, you could add ten to the Y offset (this is
LADS format):

10 SCREEN = $0400 v
100 LDY #0:LDA #“A:STA SCREEN,Y:LDY #10:LDA #“B:STA
SCREEN,Y
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An even simpler LADS method uses the + pseudo-op to
add whatever amount you wish to a label:

10 SCREEN = $0400
100 LDA #“A:STA SCREEN:STA SCREEN+10

As an example, we are writing to the screen here, but in
practice, you would print to the screen using $FFD2 as de-
scribed below. The examples above, using Y as an offset, are
more applicable to storing, say, items in a database or printing
hardcopy.

Nonetheless, if you are printing out many columns of
numbers and need a subroutine to space your printout cor-
rectly, you might want to use a subroutine which will add ten
to the Y offset each time you call the subroutine:

5000 TYA
5001 CLC
5002 ADC #10
5004 TAY
5005 RTS

This subroutine directly adds ten to the Y register when-
ever you JSR $5000. However, it’s more typical to rely on
$FFD2 for screen printing since it will keep track of the cursor
position for you. Just LDA with whatever character you want
printed and then JSR $FFD2, and it will be printed at the next
available space.

You can see that moving over ten spaces could be accom-
plished by LDA #32:JSR $FFD2 performed ten times. The 32
is the blank character. However, here, too, there is a more
practical method.

Anything you can print from BASIC you can print from ML.
So, all the cursor control characters can be printed, CLR
screen, backspace, anything. Most control characters can be
entered into LADS directly by typing #"c where c is the con-
trol code you desire:

5000 LDA #“c
5001 JSR $FFD2

Alternatively, you can put the actual Commodore ASCII
value into the accumulator prior to JSR $FFD2. One way to
find out the ASCII value to, for example, clear the screen, you
could go to BASIC and type CHR$(" ”) to get it. There is a
complete list of Commodore 128 ASCII in Appendix G. Here
is a list of the control characters:
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Dec Hex Uppercase/Graphics Set Lowercase/Uppercase Set

2 02 underline on!
5 05 white
7 07 bell tone?
9 09 tab?
10 0A linefeed?
13 0D RETURN
14 OE switch to lowercase
15 OF flash on!
17 11 cursor down
18 12 reverse on
19 13 home
20 14 delete
24 18 TAB set/clear?
27 1B ESCape
28 1C red
29 1D cursor right
30 1E green
31 1F blue
32 20 space
129 81 orange?
dark purple?
130 82 underline off?
142 8E switch to uppercase
143 8F flash off!
144 90 black
145 91 cursor up
146 92 reverse off
147 93 clear screen
148 94 insert
149 95 brown?
dark yellow?!
150 96 light red
151 97 dark gray?
dark cyan!
152 98 medium gray
153 99 light green
154 9A light blue
155 9B light gray
156 9C purple
157 9D cursor left
158 9E yellow
159 9F cyan
Notes

1. 80-column display only
2. 128 mode only

3. 40-column display only 187
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The 128 Environment

Let’s take a tour of some of the capabilities of this potent ma-
chine. We’ll discover switches and modes that you can tap
which will turbocharge your ML programs.

Versatile Escapes
First off, your ML programs can control the screen by invoking
the ESCape key sequences.

Do you need to delete the current line, the line whereon
the cursor sits? From BASIC, you would hit the ESC key, let it
go, then type D. To do this from within an ML program:

LDA #“D:JSR $CO1E

$CO1E is a subroutine which activates the escape sequences.
You must be in bank 15 for this to work. If your ML program
is going to utilize built-in routines like this, you must either
switch in bank 15 at the start of your program and leave it ac-
tive (as does LADS) or switch it in just before you access a
subroutine like the one at $CO1E.

You switch in bank 15 by:

LDA #0:STA $FF00

This is the first thing LADS does prior to assembling your
source code because LADS uses a number of built-in ROM
routines.

Here is a list of the other escape sequences; there’s one
for every letter of the alphabet. To use them, just replace the
D in the example above with the appropriate letter.

Turn on autoinsert mode

Current cursor position becomes bottom of screen window
Turn off autoinsert mode

Delete the line where the cursor is

Make cursor not flash

Make cursor flash

Enable beep sound

Prevent beep from sounding

Insert line

Move cursor to the start of the current line
Move cursor to the end of the current line
Permit scrolling

CRTTIOTMEHOO® >
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Prevent scrolling

Make screen white-on-black (80-column screen only)
Turn off insert, reverse, or quote modes

Erase from cursor to the start of the current line

Erase from cursor to the end of the current line

Turn on black-on-white mode (80-column screen only)
Change to square cursor (80-column screen)

Current cursor position becomes top of screen window
Change to underline cursor (80-column screen)

Cause scroll upward

Cause scroll downward

Switch between a 40- or 80-column TV monitor

Make TAB every eight columns

Remove all TABs

@ Clear the screen from the cursor to the bottom

NKXS<CHOWRIOJVOZZ

Many Memories

The 128 has a total of 16 memory configurations, called banks.
Each bank is 64K large, but that doesn’t mean that the 128 has
16 separate 64K blocks of memory. Rather, the banks are just
different 64K selections from the smorgasbord of RAM, ROM,
and input/output chips in the computer. Two banks, 0 and 1,
are mostly RAM, and you can do with them what you will—
the RAM in each bank comes from a separate 64K block of
RAM. Other banks are mixtures of RAM and ROM. Special
locations like low memory and $FFDO0 and other registers are
common to all banks so that communication is possible be-
tween the banks (something has to be unvarying).

How are these banks best visualized? Clearly they aren’t
all there all the time. You are always only “in” one bank at a
time. You might think of it as if you are in charge of lighting a
play and you’ve got a box with 16 buttons, one for each bank,
labeled 0 through 15.

Onstage, there are 16 different performers, each with dif-
ferent talents and different shapes (although as you can see in
the list of banks above, there are some which look like the
others in places). In any case, when the play starts, you can
turn a spotlight on any performer you wish. But, the rule is
that only one performer can be lit at a time. So, if you turn on
bank 0, you are, in effect, turning the light off one other bank,
the one previously lit.

In other words, you're confined to serial, not parallel,
lighting effects. However, you can be very fast with a series of

192

[ DR I I

(—

-

[ C




|

i

3

1

)

}

]

1

1

-1

Chapter 10

switches. You can even switch between banks so quickly that
the illusion is created that more than one is active at once. By
using JSR, JMP, CMP, LDA, and STA LONG commands (see
Chapter 11), you can access distant banks without even explic-
itly switching out of your home bank. The lighting will flicker
imperceptibly for the briefest moment when you use one of
the LONG Kernal routines.

Memory in the Monitor

When in the monitor (via F8 directly from BASIC mode or a
BRK instruction that stops an ML program in progress), you
can save, load, modify memory, and many other things (see
Chapter 3). Normally, you use four-character hex numbers to
indicate where you want things to happen:

M 0B00
Or you can leave off leading zeros:
M B00

followed by RETURN will show you what'’s in the memory
locations following address $B00 in bank 0. Bank 0 is the de-
fault when you just give the monitor a number between 0 and
FFFF (0-65535 decimal). To access other banks, you need to
add a digit between 1 and F (1-15 decimal) which will put
you in touch with any of the banks you thus select. To see
memory at BOO bank 1, type M 10B00. To see bank 14, type
M EOBOO, and so on, for any of the banks. In practice, bank 0,
bank 1, and bank 15 are the most commonly used. Bank 0 is
the monitor’s default, bank 1 has 64K of free RAM memory,
and bank 15 puts all the I/O, BASIC, and Kernal routines at
your disposal. Here’s what each bank gives you when ref-
erenced via the monitor:

Bank Memory Configuration

0 RAMO
RAM 1
RAM 2
RAM 3
Internal ROM, RAM 0, Input/Output Chips
Internal ROM, RAM 1, Input/Output Chips
Internal ROM, RAM 2, Input/Output Chips
Internal ROM, RAM 3, Input/Output Chips
External ROM, RAM 0, Input/Output Chips
External ROM, RAM 1, Input/Output Chips
External ROM, RAM 2, Input/Output Chips

D> OO U WN =
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External ROM, RAM 3, Input/Output Chips
Kernal, 1/2 Internal, RAM 0, Input/Output
Kernal, 1/2 External, RAM 0, Input/Output
Kernal, BASIC, RAM 0, Character ROM
Kernal, BASIC, RAM 0, Input/Output

Its name implies that the Commodore 128 has 128K of
RAM, and you may be wondering how that relates to the
information above. Interestingly, the 128 is actually designed
like a 256K computer with only half of its memory installed.
That memory is in two separate 64K blocks, RAM 0 and RAM
1. The other two blocks, RAM 2 and RAM 3, are empty. In
the 128, the phantom banks behave as mirror images of RAM
0 and RAM 1, respectively. Thus, banks 0 and 2 are identical,
as are banks 9 and B. Thus, until the Commodore 256 comes
along, the following banks should not be used: 2, 3, 6, 7, A and
B. Internal ROM refers to an empty socket inside the 128 which
may, in the future, hold ROM chips with built-in software,
similar to the “productivity package” in the earlier Commodore
Plus/4 model. External ROM refers to ROM in cartridges
plugged into the memory expansion port. These can be ignored
for now, so the only banks you really need to know are 0, 1,
and 15 (and occasionally 14 if you need access to the character
ROM—when designing custom character sets, for example).

If you use some BASIC ROM routines, you'll need a bank
that invokes it. If you want to use the Kernal (the jump table
into operating system, BASIC, and I/O routines), you'll have
to have that as well. In sum, you should probably call in bank
15 at the start of your ML program and have it all. You don't
put a 15 into the switching register to get bank 15—you put a
0 into it. LDA #0:STA $FF00 will create bank 15, and you can
then freely access any routines you might need; you'll have
the full complement of Commodore routines at your disposal.
If you need more RAM, switch in and out of bank 1. (Don’t
worry why 0 calls in bank 15; we'll explain forthwith.) But
remember that the RAM portion of bank 15 comes from the
same place as bank 0, the RAM 0 block. That is, address
$2000 in bank 0 and $2000 in bank 15 both refer to the same
memory location. If you put a routine at $2000 in bank 0, then
try to put another routine at that address in bank 15, you'll
overwrite the original routine.

Or, best, use the long-distance JSR, CMP, LDA, and so
on, special features which can quickly reach outside the cur-
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rent bank. There is a way to go into other banks without
switching. We'll get to that soon. For most ML, just remember
that you'll want to set bank 15 as the environment. And, a
good place to store things is in the 64K RAM available in bank
1. The other banks are only very rarely useful for most ML
programming.

Manipulating Memory

To understand how the 128 organizes its memory, you must
visualize that the 8502 chip can address only 64K of memory
at any given time. Any single instruction can only, for ex-
ample, LDA 65535 or, in hex, LDA $FFFF. You cannot LDA
higher. Zero to 65535 is the range of possible addressing for
an eight-bit chip.

How then is it possible to call this the 128 and say that
you can use 128K of RAM for your programming?

The answer is that the computer has a facility for switch-
ing between those zones of memory called banks. When you're
programming in BASIC, your program can reside in one 64K
area of memory while its variables reside in another 64K area.
In ML, you can cause banks to be switched in and out of range
of the chip. This switching is accomplished by storing different
numbers into location $FF00.

There are some considerations. It would be ungainly to
keep switching whole banks when you only wanted to use,
say, bank 1 as storage space. The easier way to access this
bank is to use special LDA and STA instructions which can
reach into it without your switching banks in your program.
We'll get to these special instructions in a minute.

When you turn on the computer, it defaults to bank 0
RAM. However, if you are programming in ML and intend to
make use of the Kernal, I/0, and BASIC routines (and most
ML programs do), you'll want to switch to bank 15 and stay
there. Bank 15 is the normal environment for ML pro-
grammers because it gives you some RAM, but it also provides
access to all the important ROM routines, too. LADS switches
in bank 15 right at the start (see the Eval subprogram in
Appendix D). You switch in bank 15 by LDA #0:STA $FF00,
and that’s it. Thereafter, unless you put something else into
$FF00, you'll be in bank 15, and all BASIC’s routines and the
Kernal and I/O routines will be at your disposal.
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Obviously, you couldn’t switch banks if all 64K always
switched when you changed banks. $FF00, for example, has to
be available to any bank. It can’t change. Neither, for other
reasons, can zero page change. You can count on these loca-
tions to be common to any bank. But we’re programming in
ML, and we're not concerned here with banks which involve
CPM, cartridge memory, or such. So, we need only worry
about bank 15, our usual configuration, and banks 0 and 1
wherein we’ll find lots of RAM with which to make good use.

How can you store something in bank 1 RAM, then call
in bank 15 with all its ROM? Won't the heavy information in
bank 15 crush or cover over what you put into bank 1? No.
bank 1 really is a different memory area; you just can’t access
it at the same time that you access bank 15 (except for the
memory zones they have in common). So, STA LONG to bank
1 while you're in bank 15. The things you STA will still be
there when you go to LDA LONG or when you switch banks.

Coming In from the Keyboard

If you need to test keys being pressed, you'll have to ask loca-
tion $D4 (212 decimal). Unhappily, this location does not
yield the ASCII code. Carriage return is not 13. The letter A is
not 65. It’s another code altogether, the “’keyboard matrix
code.” You don’t need to deal with this. If you want your ML
program to detect a particular key being pressed, find out its
“matrix code’” by running this simple BASIC program:

10 PRINT PEEK(212);:GOTO 10

and while it runs, press the key you're interested in. The num-
bers on the screen will be the code for that key. Then you can:

LDA 212:CMP #whatever code:BEQ FOUNDIT

to handle a case where some particular key was pressed. Notice
that while no key is pressed, the number 88 is always in ad-
dress 212. That’s useful. You can see if any key is pressed by:

LDA 212:CMP #88:BEQ NOKEY

and continue on with your program since the user hasn’t
touched the keyboard.

By the way, the letter A is 10, and the carriage return key
is 1 in the 128’s keyboard matrix code. Don’t worry about
what the matrix means or how it is calculated. Just run the lit-
tle BASIC program above if you want to pause your space
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invaders game when the player holds down the P key. It'll tell
you what P sticks into location 212 and can CMP for it and
JSR to a subroutine that pauses until any other key is pressed
(when 212 contains something besides the number 88.)

The Speed Switch

One of the most exciting and valuable features of the 128 is
the fact that you can make the 128 run twice as fast as nor-
mal—go from 1 to 2 megahertz. The speed is controlled by
the register at $D030. It normally contains $FC. If you LDA
#$FF:STA $D030, you switch on the turbocharger and things
only take half as long to compute. A 40-column display will
blank out during this speedup. You shouldn’t speed things up
during access to disk or printer or tape, but it’s well worth
using in other circumstances.

LADS uses this speed switch. For example, when using a
1571 disk, LADS can assemble a large program, 72K of source
code, in two minutes, 25 seconds. Pass one takes 55 seconds;
pass two takes 90 seconds. These measurements were taken
with LADS assembling itself.
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Built-in Routines

Commodore machines, since the start, have made a sensible
provision for upgrading software after the arrival of a new
model. Because many programmers will want to access the
canned ROM routines like PRINT for their own purposes, it
would be much easier for software manufacturers and pro-
grammers in general if the addresses of the most popular
ROM routines were to remain stable. Commodore has made a
provision so that this will happen.

In the original Commodore PET, JSR $FFD2 printed the
character in the accumulator. In the 128, Commodore’s latest
machine, it is the same. There is a whole list of such ad-
dresses, high up in ROM memory, which has remained trust-
worthy throughout the years and has simplified the job of
transporting software when new models and new machines
are introduced. This list is called the Kernal.

The Kernal list is a series of JMP $NNNN instructions.
The NNNN will point to the actual address, in that particular
machine, where, say, PRINT is really accomplished. You don't
need to bother with the NNNN when using the Kernal, just
JSR to the Kernal routine and your program will be directed to
the appropriate ROM address. Here are the useful Kernal
routines for the 128.

You should be in bank 15 to access the 128’s Kernal
routines. LDA #0:STA $FF00 will accomplish this; put it at the
start of your ML program if you're going to be using BASIC or
Kernal ROM routines.

Set 2,8,1

$FFBA establishes preconditions for communication with a
peripheral by setting up the file number, device number, and
secondary address. It works together with the next two
routines described immediately below. It establishes the 2,8,1
part of BASIC’s OPEN 2,8,1, “FILENAME" and, thus, you
have accomplished one third of the job of opening a file (or
loading or saving) when you've JSRed to $FFBA. You put the
file number (2, in our example above) into the accumulator,
the device number (8, for disk, in the example) into X, and the
secondary address (the example’s 1) into Y. Then JSR $FFBA.
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Here’s how to set things up for an OPEN 2,8,1:
LDA #2:LDX #8:LDY #1:JSR $FFBA

To see this (and the two companion routines below) in ac-
tion, prior to a LOAD, see the Openl subprogram in LADS
(Appendix D). If you are calling the printer, use 4,4,255.

Set Filename
$FFBD also sets things up prior to an OPEN, SAVE, or LOAD.
This tells the OPEN, SAVE, or LOAD where to find the file-
name for the command. You put the length of the name into
the accumulator, the LSB of the name into X, the MSB into Y.
Then JSR $FFBD.

Here’s how you would establish the name:

LDA #4:LDX #<FILENAME:LDY #>FILENAME:JSR $FFBD
FILENAME .BYTE “NAME"

Note that if you are communicating with the printer, there
will be no filename. However, you should still JSR to $FFBD,
but give a zero as the length.

Set Bank Number

$FF68 is the third precondition to opening, loading, or saving.
It establishes which bank you want to have involved with the
I/0. Do you want to load into bank 1? Or save from bank 0?
You must tell the computer prior to I/O. Also, this routine
tells the computer which bank holds the filename set up by the
previous routine ($FFBD).

So, put the memory bank (1-15) into the accumulator,
and the bank where the filename is into X. Then JSR $FF68.
See the SAVE routine in Open1 in LADS to follow how the
filename and bank are handled prior to a save from bank 1
(even though LADS resides in bank 15).

OPEN

$FFCO opens a file on disk or tape. After you've performed
the three precondition JSRs above, you can just JSR $FFC0
and start working with it (pulling in or sending out bytes). To
see the four Kernal calls thus far described working in concert,
please look at the LOAD or SAVE routine in LADS’s Openl
subprogram. The filename to which those examples refer is
held in the Tables subprogram.
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Just as in BASIC, you can also pass commands to the disk
via OPEN 15,8,15 “V0:”, where the item in quotes (set up just
as if it were a filename) instructs the disk to, in this case, vali-
date the disk.

CLOSE
$FFC3 closes a file. When you want to perform a CLOSE, put
the file number into the accumulator and JSR $FFC3. LADS
closes down files during its shutdown routine in the Eval sub-
program (lines 4390-4540) just prior to returning control of
the computer to BASIC.

Note that you don’t need to CLOSE after LOAD or SAVE.

INPUT#

$FFC6 establishes a channel to a peripheral for input. You put
the file number into the X register and JSR $FFCé. It’s the
equivalent of the #2 in INPUT#2,A$. This is used any time
you want to get a byte from an already opened disk file. It
would be followed by the GET routine (below). Without
establishing this channel, all input comes, by default, from the
keyboard. When you finish and wish to restore the default
conditions, you must JSR to CLEARCHANNELS (below).

OUTPUT#

$FFC9 establishes a channel to a peripheral for output. You
put the file number into the X register and JSR $FFC9. It's
the equivalent of the #3 in PRINT#3,A$. It’s used any time
you want to send a byte to an already opened disk file. It
would be followed by $FFD2, the PRINT routine. Without
establishing this channel, all output goes, by default, to the
screen. Thus, for each character that you are printing to the
printer, you must LDA #4:JSR $FFC9:LDA CHARACTER:JSR
$FFD2:JSR CLEARCHANNELS. To see this in action, see the
printer routines in the second half of the LADS Printops
subprogram.

Restore Default I/O (Screen and Keyboard)

$FFCC clears the channels which were established by the
preceding two routines. It restores the keyboard as the default
for input and the screen as the default for output.
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INPUT

$FFCF is an important routine. It's the equivalent of PRINT,
but in the other direction—it INPUTs characters from the key-
board, or, if a file and channel have been opened for input
from the disk, it pulls the next character off the file, leaving it
in the accumulator for you to do with as you wish (store to a
buffer, encode, look for a particular key, and so on). A disk
file will be read sequentially, one byte at a time, by repeatedly
JSR $FFCF because the disk will remember which was the last
byte pulled off the file. Also, you can read sequential, pro-
gram, or other kinds of files in this fashion. If you haven't
opened a channel to a disk file, the routine will read from the
keyboard until it detects a carriage return.

PRINT

$FFD2 is perhaps the most famous Commodore Kernal routine
and you’ll use it extensively. It parallels the INPUT routine
above, except it PRINTs characters—it goes in the other direc-
tion; it’s the O in I/O.

What you put into the accumulator will be printed to the
screen, or disk or printer (if you’'ve opened files and channels
to those devices as described above). Obviously, opening a
channel to print to the keyboard is as useless as opening a
channel to input from the printer. Some peripherals are, by
nature, insensitive to input or output.

If you intend to print directly to the screen, you can use
$C00C which operates just like $FFD2, but is slightly faster.
FFD2 eventually gets to CO0C, but it does a number of things
first which are unrelated to screen printing.

A third method of printing which some people find useful
is similar to immediate addressing. You JSR $FA17, and the
128 will look for the message you want printed immediately
following this JSR in your code. You must end the message with
a zero to show where it finishes. The computer will print the
message and then pick up the next instruction just following
the embedded message. Here’s an example which combines tra-
ditional PRINT with this new method we’re calling PRINTIM,
for print immediate:
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Program 11-1. Embedded PRINT

10 *= $BOO

20 .s

30 .0

40 ; EMBEDDED PRINT

60 PRINTIM = $FAl7; PRINT IMMEDIATE
70 PRINT = $FFD2

90 LDA #0:STA $FF@O@; SET BANK 15
100 LDA #"A:JSR PRINT; NORMAL PRINT

110 JSR PRINTIM; PRINT WHAT IMMEDIATELY FOLLOWS
120 .BYTE "BCDEFG":.BYTE ©0; ZERO DELIMITER ENDS MESSAGE

130 LDA #"H:JSR PRINT; NORMAL PRINT
140 RTS

Although this routine might at first glance seem attractive,
it is probably better to cluster all your messages at the end of
your ML program as described under PRINT in Chapter 9.
One reason is that this is an eccentric method of writing ML
and is possible with only a few operating systems. You
couldn’t run this on the 64, for instance.

But a more important reason is that you won’t be able to
debug your program as easily because embedded messages
will not, of course, disassemble.

LOAD

$FFD5 loads a program file into memory. You set it up the
way you would set up access to a sequential file (described
above) by establishing the file parameters, the filename, and
the bank wherein the name resides and the bank to which you
wish the program loaded. The parameters are set as 0,8,1 for
normal loading:

LDA #0:LDX #8:LDY #1:JSR FFBA

sets the parameters for a LOAD from disk. It would be 0,1,1
for tape.

This routine will also VERIFY. If, just prior to JSR $FFD5,
you put a zero into the accumulator, LOAD will take place.
Any other number in the accumulator will cause a VERIFY.
(There was an error if, after JSR $FFD5, the carry flag is set.
So you can BCS to an error-handling routine. All disk or tape
access can be tested in this fashion for errors. The accumulator
will contain an error code as well.)
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Following LOAD, Y holds the MSB of the ending address
and X, the LSB. :

To see the steps involved in loading a program file into
bank 1, see LOAD in the Openl LADS subprogram. In addi-
tion to setting a zero into the accumulator (to LOAD, not
VERIFY) just prior to JSR $FFD5, you can also put the LSB
into X, the MSB into Y of a target address. In this way, you
can force a LOAD to an address other than that from which
the program was originally saved. To trigger this forced load,
you must use a secondary address of 0; that is, the value you
load into the Y register before you call the routine to set the
file parameters ($FFBA) must be 0 instead of the 1 shown in
the example above. Then:

LDA #0; cause LOAD
LDX #0; LSB

LDY #$80; MSB

JSR $FFD5

will cause the program to be loaded at address $8000, regard-
less of where it was saved from. Normally, BASIC programs
are saved from $1C00.

SAVE

$FFD8 saves a program to disk or tape. It's quite similar to the
way you load and is illustrated, like LOAD, in the LADS
Open1 subprogram. Set the filename (see $FFBD above); set
the bank number (see $FF68 above); set the file parameters
(see $FFBA above). The accumulator is unused in this routine;
Y holds 8 for disk or 1 for tape, and X, holding the secondary
address, is only used for tape SAVEs. Then load the pointer to
the starting address of the program you want saved into the
accumulator. There is a pointer to the normal start of BASIC
programs at $2D, so, unless you are saving something other
than a BASIC program, LDA #$2D. Put the ending address
(there’s a pointer at $2F holding this address) into X (LSB) and
Y (MSB) and JSR $FFDS8. To establish the ending address: LDX
$2F:.LDY $30.

Test RUN/STOP Key

$FFE1 checks the RUN/STOP key. If it’s being pressed, the Z
flag will be set, so you can JSR $FFE1:BEQ STOPKEYDOWN.
This is one way to let the user exit your ML program. See line
690 in the Eval subprogram of LADS.
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GET

$FFE4 GETs a character. This is a way to get a keypress in the
Commodore ASCII code from the keyboard. Unlike polling loca-
tion $D4, where you get the keyboard matrix value of a
pressed key, JSR $FFE4 leaves a printable ASCII character
code in the accumulator. It will return a zero if no key is
pressed:

GETKEY JSR $FFE4
BEQ GETKEY

CMP #13

BEQ CARRIAGE
CMP #65

BEQ CHARA

CMP #66:BEQ CHARB
CMP #“C:BEQ CHARC
CMP #“D:BEQ CHARD

shows how to accept input from the user and branch to appro-
priate subroutines depending on which key the user selected.
You can use this to allow selection from a menu (CMP #”1 if
the 1 key is pressed) or to build your own customized input
routine which, for example, might refuse to recognize any
numbers and, upon detecting one, would BEQ GETKEY to
wait for a correct key. And, to make $FFE4 especially conven-
ient, you can directly print whatever ASCII value is returned:

LOOP JSR $FFE4; GET KEYPRESS
BEQ LOOP; 0 MEANS NO KEY WAS PRESSED, SO TRY AGAIN
JSR $FFD2; ECHO THE CHARACTER TO SCREEN

Cursor Control

$FFFO0 allows you to find out where the cursor is on the screen
or to move it to a different location. If you are using the 128’s
windowing facility, the positions will reference the start ad-
dress of the window.

The carry flag is used to determine whether you intend to
read or move the cursor. SEC if you want to read. CLC if you
want to move.

To move the cursor down three lines and over five po-
sitions, you first read its position by SEC:JSR $FFF0. Then,
you set it up to move down three lines by INX:INX:INX and
over five columns by INY:INY:INY:INY:INY and CLC:JSR
$FFFO0 to send the cursor to its new place on the screen. The
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carry will be set if there was an error, so you can BCS
ERROROUTINE after JSR $FFF0 to check.

This routine has obvious applications for screen format-
ting, TAB, and PRINTAT routines. It could also be used to
govern some kinds of games where character graphics are on
the move around the screen.

The routines described so far (except for Set Bank Number
and Print Immediate) are Commodore Kernal routines and, there-
fore, can be used in 64 mode as well as 128 mode. However, the
following routines are new, created to access some of the features
unique to the 128.

GO 64

$FF4D sends you into 64 mode, with no hope of returning.
JMP to it and you cannot regain control via ML. It’s as if you
typed GO 64 from BASIC and answered Y when asked ARE
YOU SURE? The machine transforms itself into a 64 and the
transformation cannot be reversed without resetting the
computer.

Customize Function Keys

$FF65 changes the command available via one of the function
keys. You can customize a function key to print whatever you
want onscreen and, if it's a command, perform a carriage re-
turn to activate the command. Function keys operate using a
principle similar to the “dynamic keyboard” technique in use
for years on Commodore computers. Dynamic keyboard refers
to stuffing the keyboard buffer with the required command
and then, when the computer regains control, the buffer is
emptied to the screen just as if the user had typed in whatever
was in the buffer. This can, among other things, cause a
BASIC program to modify itself (if you include a line number
at the start of the message and end with a carriage return).

To program a function key, you have the accumulator
point to a pointer in zero page which has the LSB, MSB, and
bank number of the string which you want printed when the
function key is pressed. So, if you set up:

FA 00
FB 30
FCOF

that would point to a string at $3000 in bank 15. Waiting at
208

[

-

[

.‘,
-~

- C C C

[



15 I I

]

N

]

2

Chapter 11

address 3000 might be LIST with a carriage return. In LADS,
you would:

LDA #<F8:STA $FA:LDA #>F8:STA $FB:LDA #15:STA $FC
to set up the pointer and have, at the location we’ll label F8:
F8 .BYTE “LIST":.BYTE 13

Then, you put the length of your string into Y which, in this
example, is 5. Finally, put the function key you want to mod-
ify into X (8, in this example), and then JSR $FF65. The com-
plete LADS source code to accomplish this is

LDA #0:STA $FF00; SWITCH INTO BANK 15

LDA #<F8:STA $FA:LDA #>F8:STA $FB:LDA #15:STA $FC; SET
UP POINTER TO F8

LDA #$FA:LDY #5:LDX #8:JSR $FF65; CREATE FUNCTION
KEY #8

F8 .BYTE “LIST”:.BYTE 13

The normal function keys are numbered 1 through 8. You
can also customize the SHIFT-RUN/STOP key by putting 9
into X, or the HELP key with a 10 in X prior to JSRing (these
two keys cannot be changed via the KEY command in BASIC.
It’s possible only in ML).

Bank Number Code

$FF6B lets you know the proper code for accessing a memory
bank. You may have noticed that you LDA #0:STA $FF00 to
select bank fifteen, not bank zero as you might expect. When
setting the $FF00 register, you have to use the code, but when
indicating a bank in most other routines (far JSR, LDA, etc.,
and FF65 above) you give the actual bank number.

If you have a problem accessing a bank, it may be that
you need to use the bank code rather than the bank’s actual
number. In that case, try LDX #BANKNUMBER:JSR
$FF6B:BRK, and the accumulator will hold the bank code for
that bank number. To find out what bank code to store in
$FF00 to switch to bank 14:

LDX #14:JSR $FF6B:BRK

and the accumulator will have the answer. Try substituting
that number for the actual bank number in your routine and
see if it works. However, other than $FF00 and some few reg-
isters right above it, the actual bank number will work and
you needn’t bother with any of this special coding.
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Long-Distance Access

JSR Long

$FF6E will JSR to an ML routine in a bank other than the one
you're currently in. There are several such long-distance
routines which will be described below. They use the actual
bank number and also set up pointers in zero page. Some
preparations are necessary. First we must save the registers
and the status register:

STA 6:STX 7:STY 8:PHP:PLA:STA 5

accomplishes that. Then we announce that we want to JSR to
bank 1 at address $4000:

LDA #1:STA 2:LDA #$40:STA 3:LDA #0:STA 4

and we can now JSR $FF6E, and the ML routine in bank 1 at
address $4000 will RTS back to our current bank just like any
other subroutine. However, we'll need to mirror image the
save-registers routine above to restore stability:

LDA 5:PHA:LDA 6:LDX 7:LDY 8:PLP

This makes a JSR long-distance nondestructive to the current
environment, like $FFD2. Registers and the flags are un-
affected by the JSR because we saved and restored them.

JMP Long

$FF71 is a JMP long-distance. It works precisely like the JSR
described above except that, like any JMP, there is no auto-
matic return.

LDA Long

$FF74 is a long-distance LDA (NN),Y and, as with JSR long-
distance described above, must set up a few things before be-
ing activated. You put the pointer to the address in the
accumulator and the bank number in X. Presumably, Y is be-
ing used by you as an index as it normally would be in in-
direct Y addressing.

If you want to load the byte at address $4000 of bank 1
(you're not in bank 1 or you wouldn’t need to load long-
distance):

LDA #0:STA $FC:LDA #$40:STA $FD; to set up the pointer
LDA $FC; to point to the pointer

LDX #1; point to the bank

" JSR $FF74; causes LDA ($FC),Y from bank 1
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STA Long
$FF77 is a long-distance STA (NN),Y and operates like LDA
described just above. You put the byte you want stored into
the accumulator and the bank number into X. However, you
must also store the pointer ($FC in our example below) into
$2B9:

First set up the pointer:
LDA #0:STA $SFC:LDA #$40:STA $FD:LDA #$FC:STA $2B9
Then put the byte you want stored into the accumulator:
LDA #45
And put the bank number into X:
LDX #1
And:
JSR $FF77

Remember that, as always, Y is an offset, so if it’s not
holding a zero when you JSR $FF77, its value will be added to
$4000 to determine exactly where in bank 1 the 45 in the
accumulator will be stored.

When the .D pseudo-op is invoked in LADS, it stores ob-
ject code to bank 1 and uses this long-distance STA.

CMP Long
$FF7A compares—CMP (NN),Y—Ilong-distance. You set up a
pointer in zero page and store the pointer’s address in $2C8
(as described above for the long-distance STA). Then you put
the byte to be compared into the accumulator and the bank
number into X. Y holds the offset, if any, as is usual with in-
direct Y addressing.

Then JSR $FF7A and the flags will be set according to the
result of the comparison as normal. You can BEQ, BNE, BCC,
BCS as you normally would after a CMP test.
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Appendix A

8502 Instruction Set

Here are the 56 mnemonics, the 56 instructions you can give
the 8502 (or 6502 or 6510) chip. Each of these instructions is
described below in several ways: what it does, what major
uses it has in ML programming, what addressing modes it can
use, what flags it affects, its opcode (hex/decimal), and the
number of bytes it uses up.

ADC

What it does: Adds byte in memory to the byte in the
accumulator, plus the carry flag if set. Sets the carry flag if re-
sult exceeds 255. The result is left in the accumulator.

Major uses: Adds two numbers together. If the carry flag
is set prior to an ADC, the resulting number will be one
greater than the total of the two numbers being added (the
carry is added to the result). Thus, one always clears the carry
(CLC) before beginning any addition operation. Following an
ADC, a set (up) carry flag indicates that the result exceeded
one byte’s capacity (was greater than 255), so you can chain-
add bytes by subsequent ADCs without any further CLCs (see
“Multibyte Addition” in Appendix E).

Other flags affected by addition include the V (overflow)
flag. This flag is rarely of any interest to the programmer. It
merely indicates that a result became larger than could be held
within bits 0-6. In other words, the result ““overflowed’” into
bit 7, the highest bit in a byte. Of greater importance is the
fact that the Z flag is set if the result of an addition is zero.
Also the N flag is set if bit 7 is set. This N flag is called the
“negative” flag because you can manipulate bytes thinking of
the seventh bit as a sign (+ or —) to accomplish “signed
arithmetic” if you want to. In this mode, each byte can hold a
maximum value of 127 (since the seventh bit is used to reveal
the number’s sign). The B branching instruction’s relative
addressing mode uses this kind of arithmetic.

ADC can be used following an SED which puts the 8502
into “decimal mode.” Here’s an example. Note that the num-
ber 75 is decimal after you SED:
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SED

CLC

LDA #$75

ADC #$05 This will result in 80.

CLD Always get rid of decimal mode as soon as you've
finished.

Attractive as it sounds, the decimal mode isn’t of much
real value to the programmer. LADS will let you work in deci-
mal if you want to without requiring that you enter the 8502’s
mode. Just leave off the $, and LADS will handle the decimal
numbers for you.

Addressing modes:

Name Format Opcode Bytes Used
Immediate ADC #15 $69/105 2
Zero Page ADC 15 $65/101 2
Zero Page X ADC 15,X $75/117 2
Absolute ADC 1500 $6D/109 3
Absolute, X ADC 1500,X $7D/125 3
Absolute,Y ADC 1500,Y  $79/121 3
Indirect,X ADC (15,X) $61/97 2
Indirect,Y ADC (15),Y $71/113 2

Affected flags: NZ CV

AND

What it does: Logical ANDs the byte in memory with the
byte in the accumulator. The result is left in the accumulator.
All bits in both bytes are compared, and if both bits are one,
the result is one. If either or both bits are zero, the result is
zero.

Major uses: Most of the time, AND is used to turn bits
off. Let’s say that you are pulling in numbers higher than 128
(10000000 and higher) and you want to “unshift” them and
print them as lowercase letters. You can then put a zero into
the seventh bit of your “mask’ and then AND the mask with
the number being unshifted:
LDA? Test number
AND #$7F 01111111

(If either bit is zero, the result will be zero. So the seventh
bit of the test number is turned off here, and all the other bits
in the test number are unaffected.)
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Addressing modes:

Name Format Opcode Bytes Used
Immediate AND #15 $29/41 2

Zero Page AND 15 $25/37 2

Zero Page, X AND 15,X $35/53 2

Absolute AND 1500 $2D/45 3

Absolute, X AND 1500,X $3D/61 3
Absolute,Y AND 1500,Y $39/57 3

Indirect,X AND (15,X) $21/33 2

Indirect,Y AND (15),Y $31/49 2

Affected flags: N Z

ASL

What it does: Shifts the bits in a byte to the left by 1.
This byte can be in the accumulator or in memory, depending
on the addressing mode. The shift moves the seventh bit into
the carry flag and shoves a zero into the zeroth bit.

Flag

WAWAWA
= % T

Bit Bit Bit

6 5

Bit Bit
3 2

Bit
0

Major uses: Allows you to multiply a number by 2. Num-
bers bigger than 255 can be manipulated using ASL with ROL
(see “Multiplication” in Appendix E).

A secondary use is to move the lower four bits in a byte
(a four-bit unit is often called a nybble) into the higher four
bits. The lower bits are replaced by zeros, since ASL stuffs
zeros into the zeroth bit of a byte. You move the lower to the

higher nybble of a byte by ASL ASL ASL ASL.

Addressing modes:

Name
Accumulator
Zero Page
Zero Page, X
Absolute
Absolute, X

Format
ASL

ASL 15
ASL 15,X
ASL 1500
ASL 1500,X

Affected flags: N Z C

Opcode
$0A/10
$06/6

$16/22
$0E/14
$1E/30

Bytes Used

WWNN =

217



Appendix A

BCC

What it does: Branches up to 127 bytes forward or 128
bytes backward from the address of the following instruction
if the carry flag is clear. In effect, it branches if the first item
(the accumulator ¢ontents) is lower than the second, as in LDA
#149:CMP #150 or LDA #15: SBC #22. The comparison or
subtraction would clear the carry and, the cleared carry then
triggering BCC, a branch would take place.

Major uses: For testing the results of CMP or ADC or
other operations which affect the carry flag. IF-THEN or ON-
GOTO type structures in ML can involve the BCC test. It is
similar to BASIC’s < instruction.

Addressing modes:
Name Format Opcode Bytes Used
Relative BCC addr. $90/144 2

Affected flags: None

BCS

What it does: Branches up to 127 bytes forward or 128
bytes backward from the address of the following instruction
if the carry flag is set. It branches if the first item (the accu-
mulator contents) is higher than or equal to the second, as in
LDA #249:CMP #150 or LDA #85:SBC #22. The comparison
or subtraction would set the carry and, the carry then trigger-
ing BCS, a branch would take place.

Major uses: For testing the results of LDA or ADC or
other operations which affect the carry flag. IF-THEN or ON-
GOTO type structures in ML can involve the BCC test. It is
similar to BASIC’s >= instruction.

Addressing modes:

Name Format Opcode Bytes Used
Relative BCS addr. $B0/176 2

Affected flags: None

BEQ
What it does: Branches up to 127 bytes forward or 128
bytes backward from the address of the following instruction
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if the zero flag (Z) is set. In other words, it branches if an ac-
tion on two bytes results in a zero, as in LDA #150: CMP
#150 or LDA #22: SBC #22. These actions would set the zero
flag, so the branch would take place.

Major uses: For testing the results of LDA or ADC or
other operations which affect the carry flag. IF-THEN or ON-
GOTO type structures in ML can involve the BEQ test. It is
similar to BASIC’s = instruction.

Addressing modes:

Name Format Opcode Bytes Used
Relative BEQ addr. $F0/240 2

Affected flags: None

BIT

What it does: Tests the bits in the byte in memory against
the bits in the byte held in the accumulator. The bytes (mem-
ory and accumulator) are unaffected. BIT merely sets flags.
The Z flag is set as if an accumulator AND memory had been
performed. The V flag and the N flag receive copies of the
sixth and seventh bits of the tested number.

Major uses: Although BIT has the advantage of not hav-
ing any effect on the tested numbers, it is infrequently used
because you cannot employ the immediate addressing mode
with it. Other tests (CMP and AND, for example) can be used
instead.

Addressing modes:

Name Format Opcode Bytes Used
Zero Page BIT 15 $24/36 2

Absolute BIT 1500 $2C/44 3

Affected flags: N Z V

BMI

What it does: Branches up to 127 bytes forward or 128
bytes backward from the address of the following instruction
if the negative (N) flag is set. In effect, it branches if the sev-
enth bit has been set by the most recent event: LDA #150 or
LDA #128 would set the seventh bit. These actions would set
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the N flag, signifying that a minus number is present if you are
using signed arithmetic or that there is a shifted character (or a
BASIC keyword) if you are thinking of a byte in terms of the
ASCII code.

Major uses: Testing for BASIC keywords, shifted ASCII,
or graphics symbols. Testing for + or — in signed arithmetic.

Addressing modes:

Name Format Opcode Bytes Used
Relative BMI addr. $30/48 2

Affected flags: None

BNE

What it does: Branches up to 127 bytes forward or 128
bytes backward from the address of the following instruction
if the zero flag is clear. In other words, it branches if the result
of the most recent event is not zero, as in LDA #150: SBC
#120 or LDA #128: CMP #125. These actions would clear the
Z flag, signifying that a result was not zero.

Major uses: The reverse of BEQ. BNE means Branch if
Not Equal. Since a CMP subtracts one number from another
to perform its comparison, a zero result means that they are
equal. Any other result will trigger a BNE (not equal). Like the
other B branch instructions, it has uses in IF-THEN, ON-
GOTO type structures and is used as a way to exit loops (for
example, BNE will branch back to the start of a loop until a
zero delimiter is encountered at the end of a text message).
BNE is like BASIC’s <> instruction.

Addressing modes:

Name Format Opcode Bytes Used
Relative BNE addr. $D0/208 2

Affected flags: None

BPL |

What it does: Branches up to 127 bytes forward or 128
bytes backward from the address of the following instruction
if the N flag is clear. In effect, it branches if the seventh bit is
clear in the most recent event, as in LDA #12 or LDA #127.
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These actions would clear the N flag, signifying that a plus
number (or zero) is present in signed arithmetic mode.

Major uses: For testing the results of LDA or ADC or
other operations which affect the negative (N) flag. IF-THEN
or ON-GOTO type structures in ML can involve the BCC test.
It is the opposite of the BMI instruction. BPL can be used for
tests of “unshifted” ASCII characters and other bytes which
have the seventh bit off and so are lower than 128
(0XXXXXXX).

Addressing modes:

Name Format Opcode Bytes Used
Relative BPL addr. $10/16 2

Affected flags: None

BRK

What it does: Causes a forced interrupt. This interrupt
cannot be masked (prevented) by setting the I (interrupt) flag
within the status register. If there is a Break Interrupt Vector (a
vector is like a pointer) in the computer, it may point to a res-
ident monitor if the computer has one. The PC and the status
register are saved on the stack. The PC points to the location
of the BRK + 2.

Major uses: Debugging an ML program can often start
with a sprinkling of BRKs into suspicious locations within the
code. The ML is executed, a BRK stops execution and drops
you into the monitor, you examine registers or tables or vari-
ables to see if they are as they should be at this point in the
execution, and then you restart execution from the breakpoint.
This instruction is essentially identical to the actions and uses
of the STOP command in BASIC.

Addressing modes:

Name Format Opcode Bytes Used
Implied BRK $00/0 1

Affected flags: Break (B) flag is set.
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BVC

What it does: Branches up to 127 bytes forward or 128
bytes backward from the address of the following instruction
if the V (overflow) flag is clear.

Major uses: None. In practice, few programmers use
“signed” arithmetic where the seventh bit is devoted to in-
dicating a positive or negative number (a set seventh bit
means a negative number). The V flag has the job of notifying
you when you’ve added, say, 120 + 30, and have therefore
set the seventh bit via an “overflow” (a result greater than
127). The result of your addition of two positive numbers
should not be seen as a negative number, but the seventh bit
is set. The V flag can be tested and will then reveal that your
answer is still positive, but an overflow took place.

Addressing modes:

Name Format Opcode Bytes Used
Relative BVC addr. $50/80 2

Affected flags: None

BVS

What it does: Branches up to 127 bytes forward or 128
bytes backward from the address of the following instruction
if the V (overflow) flag is set.

Major uses: None; see BVC above.

Addressing modes:

Name Format Opcode Bytes Used
Relative BVS addr. $70/112 2

Affected flags: None

CLC

What it does: Clears the carry flag (puts a zero into it).

Major uses: Always used before any addition (ADC). If
there are to be a series of additions (multiple-byte addition),
only the first ADC is preceded by CLC since the carry feature
is necessary. There might be a carry, and the result will be in-
correct if it is not taken into account.

The 8502 does not offer an addition instruction without
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the carry feature. Thus, you must always clear it before the
first ADC so that a carry won'’t be accidentally added.

Addressing modes:

Name Format Opcode Bytes Used
Implied CLC $18/24 1

Affected flags: Carry (C) flag is set to zero.

CLD

What it does: Clears the decimal mode flag (puts a zero
into it).

Major uses: This clears the flag which forces the chip into
“’decimal mode.” On some computers, it's necessary to CLD at
the start of an ML program because the D flag can be in an in-
determinate state when you SYS to your ML routine. How-
ever, this isn’t necessary on the 128. Commodore computers
thoughtfully execute a CLD when first turned on as well as
upon entry to monitor modes (PET/CBM and 128 models)
and when the SYS command occurs.

For further detail about the 8502’s decimal mode, see SED
below.

Addressing modes:

Name Format Opcode Bytes Used
Implied CLD $D8/216 1

Affected flags: Decimal (D) flag is set to zero.

CLI
What it does: Clears the interrupt-disable flag. All inter-
rupts will therefore be serviced (including maskable ones).
Major uses: To restore normal interrupt routine process-
ing following a temporary suspension of interrupts for the
purpose of redirecting the interrupt vector. For more detail, see
SEI below.

Addressing modes:

Name Format Opcode Bytes Used
Implied CLI $58/88 1

Affected flags: Interrupt (I) flag is set to zero.
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CLV

What it does: Clears the overflow flag (puts a zero into it).
Major uses: None; see BVC above. '

Addressing modes:
Name Format Opcode Bytes Used
Implied CLV $B8/184 1

Affected flags: Overflow (V) flag is set to zero.

- CMP

What it does: Compares the byte in memory to the byte
in the accumulator. Three flags are affected, but the bytes in
memory and in the accumulator are undisturbed. A CMP is
actually a subtraction of the byte in memory from the byte in
the accumulator. Therefore, if you LDA #15:CMP #15, the re-
sult (of the subtraction) will be zero, and BEQ would be trig-
gered since the CMP would have set the Z flag.

Major uses: This is an important instruction in ML. It is
central to IF-THEN and ON-GOTO type structures. In
combination with the B branching instructions like BEQ, CMP
allows the 8502 chip to make decisions, to take alternative
pathways depending on comparisons. CMP throws the N, Z,
or C flag up or down. Then a B instruction can branch,
depending on the condition of a flag.

Often, an action will affect flags by itself, and a CMP will
not be necessary. For example, LDA #15 will put a zero into
the N flag (seventh bit not set) and will put a zero into the Z
flag (the result was not zero). LDA does not affect the C flag.
In any event, you could LDA #15: BPL TARGET, and the
branch would take effect. However, if you LDA $20 and need
to know if the byte loaded is precisely $0D, you must CMP
#$0D:BEQ TARGET. So, while CMP is sometimes not ab-
solutely necessary, it will never hurt to include it prior to
branching.

Another important branch decision is based on > or <
situations. In this case, you use BCC and BCS to test the C
(carry) flag. And you've got to keep in mind the order of the
numbers being compared. The memory byte is compared to
the byte sitting in the accumulator. The structure is accu-
mulator value is less than memory (BCC is triggered because
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the carry flag was cleared). Or accumulator value is more than
or equal to memory (BCS is triggered because the carry flag
was set). Here’s an example. If you want to find out if the
number in the accumulator is less than $40, just CMP
#$40:BCC LESSTHAN:

LDA #75

CMP #$40; IS IT LESS THAN $40?

BCC LESSTHAN

One final comment about the useful BCC/BCS tests
following CMP: It’s easy to remember that BCC means less
than and BCS means more than or equal if you notice that C is
less than S in the alphabet.

The other flag affected by CMPs is the N flag. Its uses are
limited since it merely reports the status of the seventh bit;
BPL triggers if that bit is clear, BMI triggers if it's set. How-
ever, that seventh bit does show whether the number is
greater than (or equal to) or less than 128, and you can apply
this information to the ASCII code or to look for BASIC
keywords or to search databases (BPL and BMI are used by
LADS’s database search routines in the Array subprogram).
Nevertheless, since LDA and many other instructions affect
the N flag, you can often directly BPL or BMI without any
need to CMP first.

Addressing modes:

Name Format Opcode Bytes Used
Immediate CMP #15 $C9/201 2
Zero Page CMP 15 $C5/197 2
Zero Page, X CMP 15,X $D5/213 2
Absolute CMP 1500 $CD/205 3
Absolute X CMP 1500,X $DD/221 3
Absolute,Y CMP 1500,Y  $D9/217 3
Indirect,X CMP (15,X) $C1/193 2
Indirect,Y CMP (15),Y $D1/209 2

Affected flags: N Z C

CPX

What it does: Compares the byte in memory to the byte
in the X register. Three flags are affected, but the bytes in
memory and in the X register are undisturbed. A CPX is ac-
tually a subtraction of the byte in memory from the byte in
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the X register. Therefore, if you LDA #15:CPX #15, the result
(of the subtraction) will be zero, and BEQ would be triggered
since the CPX would have set the Z flag.

Major uses: X is generally used as an index, a counter
within loops. Though the Y register is often preferred as an in-
dex since it can serve for the very useful indirect Y addressing
mode (LDA (15),Y), the X register is nevertheless pressed into
service when more than one index is necessary or when Y is
busy with other tasks.

In any case, the flags, conditions, and purposes of CPX
are quite similar to CMP (the equivalent comparison instruc-
tion for the accumulator). For further information on the vari-
ous possible comparisons (greater than, equal, less than, not
equal), see CMP above.

Addressing modes:

Name Format Opcode Bytes Used
Immediate CPX #15 $E0/224 2
Zero Page CPX 15 $E4/228 2
Absolute CPX 1500 $EC/236 3

Affected flags: N Z C

CPY

What it does: Compares the byte in memory to the byte
in the Y register. Three flags are affected, but the bytes in
memory and in the Y register are undisturbed. A CPX is ac-
tually a subtraction of the byte in memory from the byte in
the Y register. Therefore, if you LDA #15: CPY #15, the result
(of the subtraction) will be zero, and BEQ would be triggered
since the CPY would have set the Z flag.

Major uses: Y is the most popular index, the most heavily
used counter within loops since it can serve two purposes: It
permits the very useful indirect Y addressing mode—LDA
(15),Y—and can simultaneously maintain a count of loop events.

See CMP above for a detailed discussion of the various
branch comparisons which CPY can implement.
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Addressing modes:

Name Format Opcode Bytes Used
Immediate CPY #15 $C0/192 2
Zero Page CPY 15 $C4/196 2
Absolute CPY 1500 $CC/204 3

Affected flags: N Z C

DEC

What it does: Reduces the value of a byte in memory by
1. The N and Z flags are affected.

Major uses: A useful alternative to SBC when you are
reducing the value of a memory address. DEC is simpler and
shorter than SBC, and although DEC doesn't affect the C flag,
you can still decrement double-byte numbers (see “Decrement
Double-Byte Numbers” in Appendix E).

The other main use for DEC is to control a memory index
when the X and Y registers are too busy to provide this ser-
vice. For example, you could define, say, address $505 as a
counter for a loop structure. Then LOOP STA $8000:DEC
$505:BEQ END:JMP LOOP. This structure would continue
storing A into $8000 until address $505 was decremented to
zero. This imitates DEX or DEY and allows you to set up as
many nested loop structures (loops within loops) as you wish.

Addressing modes:

Name Format Opcode Bytes Used
Zero Page DEC 15 $C6/198 2
Zero Page, X DEC 15,X $D6/214 2
Absolute DEC 1500 $CE/206 3
Absolute, X DEC 1500,X $DE/222 3

Affected flags: N Z

DEX

What it does: Reduces the X register by 1.

Major uses: Used as a counter (an index) within loops.
Normally, you LDX with some number (the number of times
you want the loop executed) and then DEX:BEQ END as a
way of counting events and exiting the loop at the right time.
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Addressing modes:

Name Format Opcode Bytes Used
Implied DEX $CA /202 1

Affected flags: N Z

DEY

What it does: Reduces the Y register by 1.

Major uses: Like DEX, DEY is often used as a counter for
loop structures. But DEY is the more common of the two since
the Y register can simultaneously serve two purposes within
a loop by permitting the very popular indirect Y addressing
mode. A common way to print a screen message (the ASCII
form of the message is at $5000 in this example, and the mes-
sage ends with zero): LDY #0:LOOP LDA $5000,Y:BEQ
END:STA SCREEN,Y:INY:JMP LOOP:END and continue with
the program.

Addressing modes:

Name Format Opcode Bytes Used
Implied DEY $88/136 1

Affected flags: N Z

EOR

What it does: Exclusive-ORs a byte in memory with the
accumulator. Each bit in memory is compared with each bit in
the accumulator, and the bits are then set (given a one) if one
of the compared bits is one. However, bits are cleared if both
are zero or if both are one. The bits in the byte held in the
accumulator are the only ones affected by this comparison.

Major uses: EOR doesn’t have too many uses. Its main
value is to toggle a bit. If a bit is clear (is a zero), it will be set
(to a one); if a bit is set, it will be cleared. For example, if you
want to reverse the current state of the sixth bit in a given
byte: LDA BYTE:EOR #$40:STA BYTE. This will set bit 6 in
BYTE if it was zero (and clear it if it was one). This selective
bit toggling could be used to “shift” an unshifted ASCII
character via EOR #$80 (1000000). Or if the character were
shifted, EOR #$80 would make it lowercase. EOR toggles.
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Addressing modes:

Name Format Opcode Bytes Used
Immediate EOR #15 $49/73 2

Zero Page EOR 15 $45/69 2

Zero Page X EOR 15X - $55/85 2

Absolute EOR 1500 $4D /77 3
Absolute,X EOR 1500,X $5D/93 3
Absolute,Y EOR 1500,Y $59/89 3
Indirect,X EOR (15,X) $41/65 2

Indirect,Y EOR (15),Y $51/81 2

Affected flags: N Z

INC

What it does: Increases the value of a byte in memory

by 1

iVIajor uses: Used exactly as DEC (see DEC above), except

it counts up instead of down. For raising address pointers or
supplementing the X and Y registers as loop indexes.

Addressing modes:

Name

Zero Page
Zero Page, X
Absolute
Absolute, X

Affected flags: N Z

Format
INC 15
INC 15,X
INC 1500
INC 1500,X

Opcode

$E6/230
$F6,/246
$EE/238
$FE/254

Bytes Used

WWPNN

INX

What it does: Increases the X register by 1.
Major uses: Used exactly as DEX (see DEX above), except
it counts up instead of down. For loop indexing.

Addressing modes:

Name Format Opcode Bytes Used
Implied INX $E8/232 1
Affected flags: N Z
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INY

What it does: Increases the Y register by 1.

Major uses: Used exactly as DEY (see DEY above), except
it counts up instead of down. For loop indexing and working
with the indirect Y addressing mode—LDA (15),Y.

Addressing modes:

Name Format Opcode Bytes Used
Implied INY $C8/200 1

Affected flags: N Z

JMP

What it does: Jumps to any location in memory.

Major uses: Branching long range. It is the equivalent of
BASIC’s GOTO instruction. The bytes in the program counter
are replaced with the address (the argument) following the
JMP instruction and, therefore, program execution continues
from this new address.

Indirect jumping—JMP (1500)—is not recommended, al-
though some programmers find it useful. It allows you to set
up a table of jump targets and bounce off them indirectly. For
example, if you had placed the numbers $00 $04 in addresses
$88 and $89, a JMP ($0088) instruction would send the pro-
gram to whatever ML routine was located in address $0400.
Unfortunately, if you should locate one of your pointers on
the edge of a page (for example, $00FF or $17FF), this indirect
JMP addressing mode reveals its great weakness. There is a
bug which causes the jump to travel to the wrong place—JMP
($00FF) picks up the first byte of the pointer from $00FF, but
the second byte of the pointer will be incorrectly taken from
$0000. With JMP ($17FF), the second byte of the pointer
would come from what'’s in address $1700.

Since there is this bug and since there are no compelling
reasons to set up JMP tables, you might want to forget you
ever heard of indirect jumping.

Addressing modes:

Name Format Opcode Bytes Used
Absolute JMP 1500 $4C/76 3
Indirect JMP (1500) $6C/108 3

Affected flags: None
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JSR

What it does: Jumps to a subroutine anywhere in mem-
ory. Saves the PC (Program Counter) address, plus three, of
the JSR instruction by pushing it onto the stack. The next RTS
in the program will then pull that address off the stack and re-
turn to the instruction following the JSR.

Major uses: As the direct equivalent of BASIC’s GOSUB
command, JSR is heavily used in ML programming to send
control to a subroutine and then (via RTS) to return and pick
up where you left off. The larger and more sophisticated a
program becomes, the more often JSR will be invoked. In LADS,
whenever something is printed to screen or printer, you'll
often see a chain of JSRs performing necessary tasks: JSR
PRNTCR: JSR PRNTSA:JSR PRNTSPACE:JSR PRNTNUM:JSR
PRNTSPACE. This JSR chain prints a carriage return, the cur-
rent assembly address, a space, a number, and another space.

Another thing you might notice in LADS and other ML
programs is a PLA:PLA pair. Since JSR stuffs the correct return
address onto the stack before leaving for a subroutine, you
need to do something about that return address if you later
decide not to RTS back to the position of the JSR in the pro-
gram. This might be the case if you usually want to RTS, but
in some particular cases, you don’t. For those cases, you can
take control of program flow by removing the return address
from the stack (PLA:PLA will clean off the two-byte address)
and then performing a direct JMP to wherever you want to go.

If you JMP out of a subroutine without PLA:PLA, you
could easily overflow the stack and crash the program.

Addressing modes:

Name Format Opcode Bytes Used
Absolute JSR 1500 $20/32 3

Affected flags: None

LDA

What it does: Loads the accumulator with a byte from
memory. Copy might be a better word than load, since the byte
in memory is unaffected by the transfer.

Major uses: The busiest place in the computer. Bytes
coming in from disk, tape, or keyboard all flow through the
accumulator, as do bytes on their way to screen or peripherals.
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Also, because the accumulator differs in some important ways
from the X and Y registers, the accumulator is used by ML
programmers in a different way from the other registers.

Since INY/DEY and INX/DEX make those registers useful
as counters for loops (the accumulator couldn’t be conve-
niently employed as an index; there is no INA instruction), the
accumulator is the main temporary storage register for bytes
during their manipulation in an ML program. ML program-
ming, in fact, can be defined as essentially the rapid, or-
ganized maneuvering of single bytes in memory. And it is the
accumulator where these bytes often briefly rest before being
sent elsewhere.

Addressing modes: '

Name Format Opcode Bytes Used
Immediate LDA #15 $A9/169 2

Zero Page LDA 15 $A5/165 2

Zero Page,X LDA 15X $B5/181 2

Absolute LDA 1500 $AD/173 3
Absolute, X LDA 1500,X $BD/189 3
Absolute,Y LDA 1500,Y $B9/185 3

Indirect,X LDA (15,X) $A1/161 2

Indirect,Y LDA (15),Y $B1/177 2

Affected flags: N Z

LDX

What it does: Loads the X register with a byte from
memory.

Major uses: The X register can perform many of the tasks
that the accumulator performs, but it is generally used as an
index for loops. In preparation for its role as an index, LDX
puts a value into the register.

Addressing modes:

Name Format Opcode Bytes Used
Immediate LDX #15 $A2/162 2
Zero Page LDX 15 $A6/166 2
Zero Page,Y LDX 15,Y $B6/182 2
Absolute LDX 1500 $AE/174 3
Absolute,Y LDX 1500,Y $BE/190 3

Affected flags: N Z
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LDY
What it does: Loads the Y register with a byte from
memory.

Major uses: The Y register can perform many of the tasks
that the accumulator performs, but it is generally used as an
index for loops. In preparation for its role as an index, LDY
puts a value into the register.

Addressing modes:

Name Format Opcode Bytes Used
Immediate LDY #15 $A0/160 2
Zero Page LDY 15 $A4/164 2
Zero Page, X LDY 15,X $B4/180 2
Absolute LDY 1500 $AC/172 3
Absolute, X LDY 1500,X $BC/188 3

Affected flags: N Z

LSR

What it does: Shifts the bits in the accumulator or in a
byte in memory to the right by one bit. A zero is stuffed into
bit 7, and bit 0 is put into the carry flag.

oi‘qc;'qc}‘c;‘/\
I‘I
Carry

‘Bit Bit Bit Bit Bit Bit Bit Bit Flag
7 6 5 4 3 2 1 0

Major uses: To divide a byte by 2. In combination with
the ROR instruction, LSR can divide a two-byte or larger num-
ber (see Appendix E).

LSR:LSR:LSR:LSR will put the high four bits (the high
nybble) into the low nybble (with the high nybble replaced by
the zeros being stuffed into the seventh bit and then shifted to
the right).
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Addressing modes:

Name Format Opcode Bytes Used
Accumulator LSR $4A /74 2
Zero Page LSR 15 $46/70 2
Zero Page, X LSR 15,X $56/86 2
Absolute LSR 1500 $4E/78 3
Absolute,X LSR 1500,X $5E/94 3

Affected flags: N Z C

NOP

What it does: Nothing; NO oPeration.

Major uses: Debugging. When setting breakpoints with
BRK, you will often discover that a breakpoint, when exam-
ined, passes the test. That is, there is nothing wrong at that
place in the program. So, to allow the program to execute to
the next breakpoint, you cover the BRK with a NOP. Then,
when you run the program, the computer will slide over the
NOP with no effect on the program. Three NOPs could cover
a JSR XXXX, and you could see the effect on the program
when that particular JSR is eliminated.

Addressing modes:

Name Format Opcode Bytes Used
Implied NOP $EA /234 1

Affected flags: None

ORA

What it does: Logically ORs a byte in memory with the
byte in the accumulator. The result is in the accumulator. An
OR results in a one if either the bit in memory or the bit in
the accumulator is one.

Major uses: Like an AND mask which turns bits off, ORA
masks can be used to turn bits on. For example, if you wanted
to “’shift” an ASCII character by setting the seventh bit, you
could LDA CHARACTER:ORA #$80. The number $80 in bi-
nary is 10000000, so all the bits in CHARACTER which are
ORed with zeros here will be left unchanged. (If a bit in
CHARACTER is a one, it stays a one. If it is a zero, it stays
zero.) But the one in the seventh bit of $80 will cause a zero
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in the CHARACTER to turn into a one. (If CHARACTER al-
ready has a one in its seventh bit, it will remain a one.)

Addressing modes:

Name Format Opcode Bytes Used
Immediate ORA #15 $09/9 2
Zero Page ORA 15 $05/5 2
Zero Page, X ORA 15,X $15/21 2
Absolute ORA 1500 $0D/13 3
Absolute, X ORA 1500,X $1D/29 3
Absolute,Y ORA 1500,Y $19/25 3
Indirect,X ORA (15,X) $01/1 2
IndirectY .  ORA (15)Y $11/17 2

Affected flags: N Z

PHA

What it does: Pushes the accumulator onto the stack.

Major uses: To temporarily (very temporarily) save the
byte in the accumulator. If you are within a particular sub-
routine and you need to save a value for a brief time, you can
PHA it. But beware that you must PLA it back into the accu-
mulator before any RTS so that it won’t misdirect the computer
to the wrong RTS address. All RTS addresses are saved on the
stack. Probably a safer way to temporarily save a value (a
number) would be to STA TEMP or put it in some other tem-
porary variable that you've set aside to hold things. Also, the
values of A, X, and Y need to be temporarily saved, and the
programmer will combine TYA and TXA with several PHAs to
stuff all three registers onto the stack. But, again, matching
PLAs must restore the stack as soon as possible and certainly
prior to any RTS.

Addressing modes:

Name Format Opcode . Bytes Used
Implied PHA $48/72 1

Affected flags: None
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PHP

What it does: Pushes the “processor status”” onto the top
of the stack. This byte is the status register, the byte which
holds all the flags: NZCID V.

Major uses: To temporarily, very temporarily, save the
state of the flags. If you need to preserve all current conditions
for a minute (see description of PHA above), you may also
want to preserve the status register as well. You must, how-
ever, restore the status register byte and clean up the stack by
using a PLP before the next RTS.

Addressing modes:

Name Format Opcode Bytes Used
Implied PHP $08/8 1

Affected flags: None

PLA

What it does: Pulls the top byte off the stack and puts it
into the accumulator.

Major uses: To restore a number which was temporarily
stored on top of the stack (with the PHA instruction). It is the
opposite action of PHA (see above). Note that PLA does affect
the N and Z flags. Each PHA must be matched by a corre-
sponding PLA if the stack is to correctly maintain RTS ad-
dresses, which is the main purpose of the stack.

Addressing modes:

Name Format Opcode Bytes Used
Implied PLA $68/104 1

Affected flags: N Z

PLP

What it does: Pulls the top byte off the stack and puts it
into the status register (where the flags are). PLP is a mne-
monic for PuLl Processor status.

Major uses: To restore the condition of the flags after the
status register has been temporarily stored on top of the stack
(with the PHP instruction). It is the opposite action of PHP
(see above). PLP, of course, affects all the flags. Any PHP
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must be matched by a corresponding PLP if the stack is to cor-
rectly maintain RTS addresses, which is the main purpose of
the stack.

Addressing modes:

Name Format Opcode Bytes Used
Implied PLP $28/40 1

Affected flags: All

ROL

What it does: Rotates the bits in the accumulator or in a
byte in memory to the left by one bit. A rotate left (as op-
posed to an ASL, Arithmetic Shift Left) moves bit 7 to the
carry, moves the carry into bit 0, and every other bit moves one
position to its left. (ASL operates quite similarly, except it al-
ways puts a zero into bit 0.)

! LN LN DN DN
__&"f‘f‘ NANANAN
Carry

Flag Bit Bit Bit Bit Bit Bit Bit Bit
7 6 5 4 3 2 1 0

Major uses: To multiply a byte by 2. ROL can be used
with ASL to multiply multiple-byte numbers since ROL pulls
any carry into bit 0. If an ASL resulted in a carry, it would be
thus taken into account in the next higher byte in a multiple-
byte number. (See Appendix E.)

Notice how the act of moving columns of binary numbers
to the left has the effect of multiplying by 2:

0010 The number 2 in binary
0100 The number 4

This same effect can be observed with decimal numbers,
except the columns represent powers of 10:

0010 The number 10 in decimal
0100 The number 100

237



Appendix A

Addressing modes:

Name Format Opcode Bytes Used
Accumulator ROL $2A /42 1
Zero Page ROL 15 $26/38 2
Zero Page,X ROL 15,X $36/54 2
Absolute ROL 1500 $2E/46 3
Absolute,X ROL 1500,X $3E/62 3

Affected flags: N Z C

ROR

What it does: Rotates the bits in the accumulator or in a
byte in memory to the right by one bit. A rotate right (as op-
posed to an LSR, Logical Shift Right) moves bit 0 into the
carry, moves the carry into bit 7, and every other bit moves one
position to its right. (LSR operates quite similarly, except it al-
ways puts a zero into bit 7.)

Carry
Bit Bit Bit Bit Bit Bit Bit Bit Flag
7 6 5 4 3 2 1 0

Major uses: To divide a byte by 2. ROR can be used with
LSR to divide multiple-byte numbers since ROR puts any
carry into bit 7. If an LSR resulted in a carry, it would be thus
taken into account in the next lower byte in a multiple-byte
number. (See Appendix E.) ,

Notice how the act of moving columns of binary numbers
to the right has the effect of dividing by 2:

1000 The number 8 in binary
0100 The number 4

This same effect can be observed with decimal numbers,
except the columns represent powers of 10:

1000 The number 1000 in decimal
0100 The number 100
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Addressing modes:

Name Format Opcode Bytes Used
Accumulator ROR $6A /106 1

Zero Page ROR 15 $66,/102 2

Zero Page, X ROR 15,X $76/118 2

Absolute ROR 1500 $6E/110 3

Absolute, X ROR 1500,X $7E/126 3

Affected flags: N Z C

RTI

What it does: Returns from an interrupt.

Major uses: None. You might want to add your own
routines to your machine’s normal interrupt routines (see SEI
below), but you won't be generating actual interrupts of your
own. Consequently, you cannot ReTurn from Interrupts you
never create.

Addressing modes:

Name Format Opcode Bytes Used
Implied RTI $40/64 1

Affected flags: All (status register is retrieved from the stack)

RTS

What it does: Returns from a subroutine jump (caused by
JSR).

Major uses: Automatically picks off the two top bytes on
the stack and places them into the program counter. This re-
verses the actions taken by JSR (which put the program
counter bytes onto the stack just before leaving for a sub-
routine). When RTS puts the return bytes into the program
counter, the next event in the computer’s world will be the

* instruction following the JSR which stuffed the return address

onto the stack in the first place.

Addressing modes:
Name Format Opcode Bytes Used
Implied RTS $60/96 1

Affected flags: None
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SBC

What it does: Subtracts a byte in memory from the byte
in the accumulator, and “borrows” if necessary. If a “borrow”
takes place, the carry flag is cleared (set to zero). Thus, you al-
ways SEC (set the carry flag) before an SBC operation so that
you can tell if you need a “borrow.” In other words, when an
SBC operation clears the carry flag, it means that the byte in
memory was larger than the byte in the accumulator. And
since memory is subtracted from the accumulator in an SBC
operation, if memory is the larger number, we must “borrow.”

Major uses: Subtracts one number from another.

Addressing modes:

Name Format Opcode Bytes Used
Immediate SBC #15 $E9/233 2
Zero Page SBC 15 $E5/229 2
Zero Page, X SBC 15,X $F5/245 2
Absolute SBC 1500 $ED/237 3
Absolute, X SBC 1500,X $FD/253 3
Absolute,Y SBC 1500,Y $F9/249 3
Indirect,X SBC (15,X) $E1/225 2
Indirect,Y SBC (15),Y $F1/241 2

Affected flags: N ZC V

SEC

What it does: Sets the carry (C) flag (in the processor sta-
tus register byte).

Major uses: This instruction is always used before any
SBC operation to show if the result of the subtraction was
negative (if the accumulator contained a smaller number than
the byte in memory being subtracted from it). See SBC above.

Addressing modes:

Name Format Opcode Bytes Used
Implied SEC $38/56 1

Affected flags: C

P
SED

What it does: Sets the decimal (D) flag (in the processor
status register byte).
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Major uses: Setting this flag puts the 8502 into decimal
arithmetic mode. This mode can be easier to use when you are
inputting or outputting decimal numbers (from the user of a
program or to the screen). Simple addition and subtraction can
be performed in decimal mode, but most programmers ignore
this feature since more complicated math requires that you re-
main in the normal binary state of the 8502.

Note: Commodore computers automatically clear this
mode when powered on or when entering ML via SYS. How-
ever, Apple and Atari computers can enter ML in an in-
determinate state. Since there is a possibility that the D flag
might be set (causing havoc) on entry to an ML routine, it is
sometimes suggested that Apple and Atari owners use the
CLD instruction at the start of any ML program they write.
Fortunately Commodore users do not need to worry about
this, but all ML programmers must CLD following any delib-
erate use of the decimal mode (see SED).

Addressing modes:

Name Format Opcode Bytes Used
Implied SED $F8/248 1

Affected flags: D

SEI

What it does: Sets the interrupt disable flag (the I flag) in
the processor status byte. When this flag is up, the 8502 will
not acknowledge or act upon interrupt attempts (except a few
nonmaskable interrupts which can take control in spite of this
flag, like a reset of the entire computer). The operating sys-
tems of most computers will regularly interrupt the activities
of the chip for necessary, high-priority tasks such as updating
an internal clock, displaying things on the TV, receiving sig-
nals from the keyboard, and so forth. These interruptions of
whatever the chip is doing normally occur 60 times every sec-
ond. To find out what housekeeping routines your computer
interrupts the chip to accomplish, look at the pointer in
$FFFE /FFFF. It gives the starting address of the maskable
interrupt routines.

Major uses: You can alter a RAM pointer so that it sends
these interrupts to your own ML routine, and your routine then
would conclude by pointing to the normal interrupt routines.
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In this way, you can add something you want (a click sound
for each keystroke? the time of day on the screen?) to the nor-
mal actions of your operating system. The advantage of this
method over normal SYSing is that your interrupt-driven rou-
tine is essentially transparent to whatever else you are doing
(in whatever language). Your customization appears to have
become part of the computer’s ordinary habits.

However, if you try to alter the RAM pointer while the
other interrupts are active, you will point away from the nor-
mal housekeeping routines in ROM, crashing the computer.
This is where SEI comes in. You disable the interrupts while
you LDA STA LDA STA the new pointer. Then CLI turns the
interrupt back on and nothing is disturbed.

Interrupt processing is a whole subcategory of ML
programming and has been widely discussed in magazine arti-
cles. Look there if you need more detail.

Addressing modes:
Name Format Opcode Bytes Used
Implied SEI $78/120 1

Affected flags: I

STA

What it does: Stores the byte in the accumulator into
memory.

Major uses: Can serve many purposes and is among the
most used instructions. Many other instructions leave their re-
sults in the accumulator (ADC/SBC and logical operations like
ORA), after which they are stored in memory with STA.

Addressing modes:

Name Format Opcode Bytes Used
Zero Page STA 15 $85/133 2
Zero Page, X STA 15,X $95/149 2
Absolute STA 1500 $8D/141 3
Absolute, X STA 1500,X $9D/157 3
Absolute,Y STA 1500,Y $99/153 3
Indirect,X STA (15,X) $81/129 2
Indirect,Y STA (15),Y $91/145 2

Affected flags: None
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STX

What it does: Stores the byte in the X register into
memory.
Major uses: Copies the byte in X into a byte in memory.

Addressing modes:

Name Format Opcode Bytes Used
Zero Page STX 15 $86/134 2
Zero Page,Y STX 15,Y $96,/150 2
Absolute STX 1500 $8E/142 3

Affected flags: None

STY

What it does: Stores the byte in the Y register into

‘memory.

Major uses: Copies the byte in Y into a byte in memory.
Addressing modes:

Name Format Opcode Bytes Used
Zero Page STY 15 $84/132 2
Zero Page X STY 15,X $94,/148 2
Absolute STY 1500 $8C/140 3

Affected flags: None

TAX

What it does: Transfers the byte in the accumulator to the
X register.

Major uses: Sometimes you can copy the byte in the
accumulator into the X register as a way of briefly storing the
byte until it's needed again by the accumulator. If X is cur-
rently unused, TAX is a convenient alternative to PHA (an-
other temporary storage method).

However, since X is often employed as a loop counter,
TAX is a relatively rarely used instruction.

Addressing modes:

Name Format Opcode Bytes Used
Implied TAX $AA/170 1

Affected flags: N Z
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TAY

What it does: Transfers the byte in the accumulator to the
Y register.

Major uses: Sometimes you can copy the byte in the
accumulator into the Y register as a way of briefly storing the
byte until it's needed again by the accumulator. If Y is cur-
rently unused, TAY is a convenient alternative to PHA (an-
other temporary storage method).

However, since Y is quite often employed as a loop
counter, TAY is a relatively rarely used instruction.

Addressing modes:

Name Format Opcode Bytes Used
Implied TAY $A8/168 1

Affected flags: N Z

TSX

What it does: Transfers the stack pointer to the X register.

Major uses: The stack pointer is a byte in the 8502 chip
which points to where a new value (number) can be added to
the stack. The stack pointer would be “raised” by two, for ex-
ample, when you JSR and the two bytes of the program
counter are pushed onto the stack. The next available space on
the stack thus becomes two higher than it was previously. By
contrast, an RTS will pull a two-byte return address off the
stack, freeing up some space, and the stack pointer would
then be “lowered” by two.

The stack pointer is always added to $0100 since the stack
is located between addresses $0100 and $01FF.

Addressing modes:

Name Format Opcode Bytes Used
Implied TSX $BA/186 1

Affected flags: N Z
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TXA

What it does: Transfers the byte in the X register to the
accumulator.

Major uses: There are times, after X has been used as a
counter, when you’ll want to compute something using the
value of the counter. And you'll therefore need to transfer the
byte in X to the accumulator. For example, if you search the
screen for character $75:

CHARACTER = $75:5CREEN = $0400
LDX #0
LOOP LDA SCREEN,X:CMP #CHARACTER:BEQ MORE:INX
BEQ NOTFOUND
; this prevents an endless loop

MORE TXA ; you now know the character’s location
NOTFOUND BRK

In this example, we want to perform some action based
on the location of the character. Perhaps we want to remem-
ber the location in a variable for later reference. This will re-
quire that we transfer the value of X to the accumulator so
that it can be added to the SCREEN start address.

Addressing modes:

Name Format Opcode Bytes Used
Implied TXA $8A /138 1

Affected flags: N Z

TXS

What it does: Transfers the byte in X register into the
stack pointer.

Major uses: Alters where, in the stack, the current “here’s
storage space’’ is pointed to. There are no common uses for
this instruction.

Addressing modes:

Name Format Opcode Bytes Used
Implied TXS $9A /154 1

Affected flags: None
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TYA

What it does: Transfers the byte in the Y register to the
accumulator.
Major uses: See TXA.

Addressing modes:

‘Name Format Opcode Bytes Used
Implied TYA $98/152 1

Affected flags: N Z
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How to Use LADS

This appendix represents a step-by-step explanation of how to
assemble machine language programs using the LADS assem-
bler. As you familiarize yourself with its features and practice
using it, you will perhaps discover things about the assembler
which you’d want to modify to suit your own programming
style. For example, if you find that you would prefer to re-
word the error messages, simply change them in the Tables
subprogram and run LADS through itself to produce a new-
generation LADS. For a discussion on creating custom versions
of LADS, see the end of this appendix.

Here, however, is a description of the features which are
built into LADS.

General Instructions for Using LADS

LADS assembles from source files. They are particularly easy
and convenient to create: Just turn on your computer and pre-
tend you're writing a BASIC program. LADS works with
source files created exactly the way you would write a BASIC
program. You use line numbers, you can use colons, you can
insert new line numbers or delete. The only difference is that
you're writing ML, so you use ML commands rather than
BASIC commands. Here’s an example you can type in and try.
Turn on your 128 (or press the RESET button) and type this in:
10 *= 2816

15.S

16 .0

20 LDA #66:LDY #65

30 JSR $FFD2

40 TYA:JSR $FFD2

As you can see, it's quite similar to writing a BASIC pro-
gram. You use line numbers, colons, and whatever programmer’s
aids (such as automatic line numbering) that you ordinarily
use to write BASIC itself. But notice that if you use colons you
should keep the instructions tight against the colons. (LDA
#22 : LDY #0 would confuse LADS. Spaces following a colon
won't cause any problems, but it’s best to. make a habit of
leaving no spaces around colons.)
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Now you're ready to assemble. Type BLOAD “LADS and
press RETURN. Then type SYS 10000 to activate LADS. It will
assemble your program, storing the resulting ML object code
(the runnable ML program) starting at address 2816, and then
return you to BASIC mode with the familiar READY. If you
are using a 40-column screen, it will temporarily go blank dur-
ing the actual assembly because LADS switches to 2 mega-
hertz for extra speed. This won't affect anything, but you'll
not see things onscreen during an assembly.

This example program is supposed to print the characters
BA on your screen. To test it, enter SYS 2816. To change
things, just LIST your source code and, perhaps, change the
character being printed:

20 LDA #66:LDY #$43; $43 IS HEX FOR 67, THE ASCII CODE
FOR IICII

and hit RETURN, just as you would to adjust a BASIC pro-
gram line. Now we’ve asked to have the letters BC printed on
the screen. Again, activate LADS assembly by typing SYS
10000, and then test the results by SYS 2816. It’s as simple as
that.

But LADS has many other features you'll find useful as '
you program. For example, if you've typed in the “Loader”
program (Appendix F) or bought LADS on disk and have a
1571 disk drive, LADS will automatically boot into the 128
when you power up or reset. It will also redefine the F1, F2,
F3, and F5 keys to run or reload LADS at the press of a key, to
SYS 2816 ($B00, the start of many of the examples in this
book), and to invoke AUTO 10 line numbering.

The F1 key will SYS 10000 and should be used when
you're using LADS as we did in the example above. Use F3 to
BLOAD in a fresh copy of LADS if it should get corrupted and
fail to respond. Users of the 1571 disk drive might want to
change the two BLOADs to BOOTs in the Loader for greater
convenience; 1541 users should leave it as BLOAD.

Few Rules

There are very few absolute rules when using LADS, but one
is that you must provide the starting address, the address where
you want the ML program to begin in the computer’s memory.
You signify this with the *= symbol, which means ““Program
Counter equals.” LADS expects to find this *= symbol as the
first thing in your source code. When LADS sees *=, it sets
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the program counter to the number following the equal sign.
Remember also that there must be a space between the = and
the starting address: *= 2816, not *=2816.

Also notice that you can use either decimal or hexadeci-
mal numbers interchangeably in LADS. Line 20 is hex in the
example above for the number #$43, but the 66 is decimal. It's
up to you which kind of numbers you want to use at any
given time.

Features
There are a number of pseudo-ops available in LADS. Pseudo-
ops are direct instructions to the assembler which make things
easier for the programmer. The .S in line 15 in the example
above is such an instruction. It tells LADS to print the results
of an assembly to the screen. The .O causes LADS to send the
results of the assembly, the object code, to RAM memory.

If you add line 17 to our test program, you will cause the
listing to be in decimal instead of hex:

10 *= 2816
15 .S

16 .0

17 .NH

The pseudo-op .NH means no hex, and causes the listing
to change from hex to decimal.

You can add REM-like comments by using a semicolon.
And you can turn the screen listing off with .NS, anytime.
Turn it on or off as much as you want. This can be an es-
pecially useful switch if you don’t need to see an entire listing,
but just want to see how a small section or sections of your
program are assembling. Also, using .S will slow up the
assembly process. The .S and .NS screen listings are most
helpful as a kind of disassembly on the fly:

10 *= 2816

15 .S

16 .0

17 .NH

20 LDA #66:LDY #65
25 .NS

30 JSR $FFD2

40 TYA:JSR $FFD2

For more complete listings and more extensive debugging,
you would want to activate printer listings so you can more
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easily study the flow of things and make notes or corrections.
You turn on printer listings with .P and turn them off with
.NP. When you use .P, it automatically turns on .S, so you'll
see screen listings even if you didn’t include .S.

Because source code comments would clutter up a screen
listing, particularly a 40-column screen, comments are sup-
pressed when you use .S. However, comments are reproduced
when you use .P for printer listings. Also, if you are using a
Cardco interface with a 1541 disk drive, the .P printout might
stall. Should this happen, turn off the disk drive and the print-
out will proceed.

To have the ML stored into memory during assembly, use
.0; to switch off these POKEs to memory, use .NO.

The pseudo-ops which turn the printer on and off; direct
object code to disk, screen, and RAM; or switch between hex
and decimal printout can be switched on and off within your
source code wherever convenient. For example, you can turn
on your printer anywhere within the program by inserting .P
and turn it off anywhere with .NP. Among other things, this
would allow you to specify that only a particular section of a
large program be printed out. This can come in very handy if
you're working on a long program where there would be a
significant wait if you had to print out the whole thing.

Always put pseudo-ops on a line by themselves. Any other
programming code can be put on a line in any fashion (di-
vided by colons: LDA 15:STA 27:INY), but pseudo-ops should
be the only things on their lines. (The .BYTE pseudo-op,
described below, is an exception—it can be on a multiple-
statement line.)

100 .P .S Wrong
100 P Right
110.S  Right

And remember to keep your instructions right next to the
colons, no spaces:

100 LDA #15 : STA 5000 : INY Wrong
100 LDA #15:STA 5000:INY Right

You have now learned all you will need to know about
LADS to create and assemble the examples in this book. What
follows are additional, more advanced features of LADS.
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More Sophisticated Features

Here’s a summary of all the commands you can give LADS:

P
NP
.0

.NO
.D sourcefilename objectfilename

FILE filename

.END filename

.NS

.NH

Turn on printer listing of object
code (.S will also be activated).
Turn off printer listing of object
code. :

Turn on POKEs to memory. Ob-
ject code is stored into RAM dur-
ing assembly.

Turn off POKEs to memory.
Read source code from
sourcefilename and store object
code to objectfilename on disk
following assembly. Use no
quotes around the filenames (.O
will also be activated).

Necessary when you use .D.
Links one source file to the next
in a chain so that they will all as-
semble together as a single large
source program (end the chain
with .END pseudo-op).
Necessary when you use .D.
Links the last source file to first
source file in a chain. If you are
not assembling a chain of files
(rather, are assembling from a
single file), you must still give its
filename as the .END so that the
assembler knows where to go for
the second pass. Any source code
must have .END as the last line
in the program, whether the
source code is contained within a
single disk file or spread across a
multiple-file chain.

Turn on screen listing during
assembly.

Turn off screen listing during
assembly.

Turn on hexadecimal output for
screen or printer listing.

Turn off hexadecimal output for
screen or printer listing (as a re-
sult, the listings are in decimal).
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*= Set program counter to new
address.

+ Add a value to a label.

#“c ASCII value of character ¢ (type-
able characters only, no control
codes).

#<label Least significant byte (LSB) of
label.

#>label Most significant byte (MSB) of
label.

.BYTEN N Insert single-byte decimal num-
bers directly into object code.

BYTE “CCCCC Insert characters directly into ob-
ject code.

A Stable Buffer

The pseudo-op *= is always the first item in any ML source
code program. It tells the computer where you want your pro-
gram stored. However, *= can be used within a program too,
to change the storage addresses dynamically. This is useful
mainly when you want to create data tables. The subprogram
Tables in LADS source code is an example of a data table. (A
subprogram is one of the source code files which, when linked
together, form an entire ML program. We'll describe linking
shortly.)

Most programmers locate an ML program'’s tables, non-
zero page variables, buffers, and messages at the high end of
the ML program the way LADS does with its Tables sub-
program. Since you don’t know what the highest RAM ad-
dress will be while you're writing a program, you can force
your data tables to always reside at the same high address by
setting *= to some address, perhaps 4K above the starting ad-
dress. This gives you space to write the program below the ta-
bles without. moving the tables up higher in RAM memory
each time you add to the source code.

The advantage of stabilizing the location of your tables is
that you can easily PEEK them, and this greatly assists debug-
ging. You'll always know exactly where buffers and variables
are going to end up in memory after an assembly—regardless
of the changes you make in the program. After your program
is debugged and running perfectly, you can remove the *=
and assemble one last time, closing up the gap between the
program and its tables.
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Here’s an example. Suppose you write:

10 *= $5000
20 STA BUFFER
30 *= $6000

40 BUFFER .BYTE00000000000000

This creates an ML opcode instruction (STA buffer) at ad-
dress $5000 (the starting address of this particular example ML
program), but places the buffer itself at $6000. When you add
additional instructions after STA buffer, the location of the
buffer itself will remain at address $6000. This means that you
can write an entire program (smaller than $1000 bytes) with-
out having to worry that the location of the buffer is being
bumped up higher each time you add new instructions, new
code. It's high enough so that it remains stable at $6000, and
you can debug the program more easily. You can always check
whether something is being correctly sent into the buffer by
just looking at $6000 from the monitor.

This fragment of code illustrates two other features of
LADS. You can use the pseudo-op .BYTE to set aside some
space in memory (the zeros above just make space to hold
other things in a “buffer” during the execution of an ML pro-
gram). You can also use .BYTE to define specific numbers in
memory:

.BYTE 65 66 67 68

This would put these numbers (always use decimal num-
bers between 0 and 255 with this pseudo-op) into memory at the
location of the .BYTE instruction; .BYTE can also handle text
and any control characters (such as cursor up) except screen
clear. An easy way to create messages that you want to print
to the screen is to use the .BYTE pseudo-op and surround text
with quotes:

500 FIRSTLETTERS .BYTE “ABCD”:.BYTE 0

Then, if you wanted to print this message, you could
write:

2 *= $0B00
5 LDY #0
10 LOOP LDA FIRSTLETTERS,Y
20 BEQ ENDMESSAGE
30 STA $0400,Y; location of screen RAM
40 INY
50 JMP LOOP
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60 ENDMESSAGE RTS; finished printout
500 FIRSTLETTERS .BYTE “ABCD:.BYTE 0

Note that using the second set of quotation marks is op-
tional with the .BYTE pseudo-op: You can use either .BYTE
“ABCD:BYTE 0 or .BYTE “ABCD”:.BYTE 0. To POKE num-
bers instead of characters, just leave out the quotation marks:
BYTE 10 15 75. And since these numeric values are being
POKEd directly into bytes in memory, remember that they
cannot be larger than 255. It’s like BASIC’s POKE statement.

Another convenient pseudo-op looks like this: #*. It is
used when you want to specify a character instead of a num-
ber for immediate addressing. Say, you need to print a comma
to the screen. You could LDA #44 (the ASCII code for a
comma) and JSR PRINT.

But if you don’t remember that a comma is the number 44
in the ASCII code, and you don’t want to look it up, LADS
will do it for you. Just use a quotation mark after the # sym-
bol: LDA #”, (followed by the character you're after, in this
case, the comma). The correct value for the character will be
inserted into your object code. To print the letter A, you would
LDA #”A and proceed to print it with JSR $FFD2. Any charac-
ter you type after the quotation mark will be translated into
Commodore ASCII for you. Remember that the #" pseudo-op
gives you the screen print code, not the screen POKE code. If
you try to POKE the character directly on the 40-column
screen with STA $0400, you'll get a shifted version of what-
ever character you requested. Also, #*' cannot translate cursor
or control codes. If you want to clear the screen, you'll need to
look up clear screen on the ASCII chart in Appendix G. Clear
screen is 147, so you’'d use LDA #147:JSR PRINT to accom-
plish that.

Labels .

You probably noticed in the example above how many English
words were used to write the source code: FIRSTLETTERS,
ENDMESSAGE, LOOP. These are used pretty much as vari-
ables are used in BASIC. But there are some special advan-
tages in ML. You give subroutines names rather than line
numbers and that helps document and structure your program.
Also, these words, called labels, can be of any length. And,
unlike BASIC which sees only the first two characters as
significant, each label is entirely significant in LADS. So,
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SCREEN and SCORE are distinct labels and will not be
confused.

With LADS, as with other assemblers that permit labels, you
need not refer to locations in memory or numeric values by
using numbers. And you'll find that labels are far easier to use.

In the example above, line 10 starts off with the word
LOOP. This means that you can use the word LOOP later to
refer to that location (see line 50). That's quite a convenience:
The assembler remembers where the word LOOP is used, and
you need not refer to an actual memory address; you can refer
to the label instead. This kind of label is called a PC-type (for
Program Counter) or address-type label.

The other type of label is defined with an assembly
convention called an equate (an equal sign). This is quite simi-
lar to the way that BASIC allows you to assign value to
words—it’s called “assigning variables” when you do it in
BASIC. In ML, the = pseudo-op works pretty much the way
the = sign does in BASIC, and these “‘equates” should be put
at the very start of an ML program. (See the Defs subprogram
in Appendix D.) Here’s an example of equates, located at the
start of the program, in lines 10 and 20:

5 *= $0B00

10 SCREEN = $0400; the location of the first byte in RAM of the
screen

20 LETTERA = $41; the letter A

30;

40 START LDA #LETTERA; notice “START” (an address-type
label)

50 STA SCREEN; 40-COLUMN MODE ONLY

60 RTS

Line 10 assigns the number $0400 (1024 decimal) to the
word SCREEN. Anytime thereafter that you use the word
SCREEN, LADS will substitute $0400 when it assembles your
ML program. Line 20 “equates” the word LETTERA to the
number $41. So, when you LDA #LETTERA in line 40, the
assembler will put a $41 into your program. (Notice that, like
BASIC, LADS requires equate labels to be a single word. You
couldn’t use LETTER A, since that’s two words.)

Line 30 is just a REMark. The semicolon tells the assem-
bler that what follows on that line is to be ignored. Neverthe-
less, blank lines or graphic dividers like line 30 can help to
visually separate subroutines, tables, and equates from your
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actual ML program. In this case, we’ve used line 30 to sepa-
rate the section of the program which defines labels (lines 10-
20) from the program proper (lines 40-60). All this makes it
easier to read and understand your source code later.
Remember that in BASIC only the first two letters of a
variable name are significant. So, SCREEN and SCORE are
taken to be identical variables. LADS, however, offers you the
advantage of seeing all letters within a label as significant.
SCREEN and SCREENI1 are different labels to LADS. Of
course, you cannot use the same label to mark two different
addresses or values. You can’t use the same label for two dif-
ferent equates because that would be meaningless:
SCREEN = $0400
SCREEN = $0500

Nor should you define two different addresses within the ML
program using the same label:

10 LOOP LDA 12

20 BEQ LOOP
30 BNE LOOP
40 LOOP RTS

LADS would have no way of knowing, in lines 20 and 30,
to which LOOP you intended to branch. Don’t be concerned,
however, about keeping track of what labels you may have al-
ready used. When you assemble, LADS will report any dupli-
cate labels and tell you which line numbers they occurred in.
Then you can easily make up new labels where necessary:

40 LOOP1
or
40 NEWLOOP

Notice that lines 20 and 30, although they both contain the la-
bel LOOP, do not cause any problems. That’s because they are
only referring to the label, not defining it. Labels are defined
only when they occur as the first thing following a line num-
ber or a colon. You can use them to refer to the defined loca-
tions or values as often as you want.

A related labeling error will also be flagged by LADS. If
LADS reports this to you:

560 NUMBURS LDA 12 UNDEFINED LABEL
you would need to look at line 560. Usually, this is caused by

256

I I I I

[

C C C

-



]

-]

I

|

j

]

1

B I

Appendix B

a typo. You meant to type NUMBERS as your label and later

referred to NUMBERS (which would generate an UN-

DEFINED LABEL error message of its own). Again, just LIST

560, and type 560 NUMBERS LDA 12 to make things right.
If your source code contains a label with nothing follow-

ing it:

560 NUMBERS

or

570 NUMBERS:INY

you'll see a NAKED LABEL error message. Line 560 is mean-
ingless because the line is blank following the label. It defines
nothing. Line 570 is meaningless for the same reason because
a colon separates statements and is therefore the logical
equivalent of an end-of-line.

Automatic Math

There are times when you will want to have LADS do addi-
tion for you. That’s where the + pseudo-op comes in. If you
write “label+1”, you will add 1 to the value of the label.
Here’s how it works:

10 *= $B00
20 HIMEM = 57; top-of-memory pointer.
30;

40 LDA #0:STA HIMEM:LDA #$50:STA HIMEM +1

Here we are putting a new location into the top-of-mem-
ory pointer which the computer uses to decide where it can
store things in bank 1. (Doing that could protect an ML pro-
gram which resides above the address stored in this pointer.)
Like all pointers, it uses two bytes. If we want to store $5000
into this pointer, we store the lower half (the least significant
byte) into MEMTOP. We’ll want to put the number $50 into
the most significant byte of the pointer—but we don’t need to
waste time making a new label. It's just one higher in memory
than MEMTOP, hence, MEMTOP +1.

You'll also want to use the + pseudo-op command in
constructions like this:

10 *= $B00

15 SCREEN = $0400

17 ;

20 LDA #32; the blank character
30 LDY #0
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40 START STA SCREEN,Y
50 STA SCREEN+256,Y
60 STA SCREEN+512,Y
70 STA SCREEN+768,Y
80 INY

90 BNE START

This is the fastest way to fill memory with a given byte.
In this case we're clearing out the screen RAM by filling it
with blanks (in the 40-column mode only). As you can see, it’s
easy to indicate multiples of 256 by just adding them to the
label SCREEN. Any time you want to add a number to a label,
just attach + and the number, but don’t leave any spaces be-
tween the label, the + and the number:

LDA (LABEL + 22),Y Wrong
LDA (LABEL+22),Y Right

A similar pseudo-op command is the #<. This refers to
the least significant byte of a label. For example,
10 *= $0B00
20 SCREEN = $0400
25 SCREENPOINTER = $FB
30;
40 LDA #<SCREEN; LSB (least significant byte of the label
SCREEN, $00)
50 STA SCREENPOINTER
60 LDA #>SCREEN; MSB (most significant byte of the label
SCREEN, $04)
70 STA SCREENPOINTER +1

Line 40 is the equivalent of LDA #$00 and line 60 is the
equivalent of LDA #$04, but using #< and #> allows you to
break a label into its bytes conveniently without having to
know the actual value of the label.

You'll find this technique used several times in the LADS
source code. It puts the LSB (least signficant byte) or the MSB
(most signficant byte) of a label into the LSB or MSB of a
pointer which, in effect, creates the pointer (makes it point to
the label). In the example above, we want to set up a pointer
that will hold the address of the screen RAM. We've called
this pointer SCREENPOINTER, and we want to put $00 (the
LSB of SCREEN) into SCREENPOINTER. So, we extract the
LSB of SCREEN in line 40 by using # combined with the less-
than symbol. We complete the job of creating the pointer by
using the greater-than symbol to fetch the MSB:
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60 LDA #>SCREEN:STA SCREENPOINTER +1

Notice that these symbols must be attached to the label;
no space is allowed. For example, LDA #> SCREEN would cre-
ate problems. This LSB or MSB extraction from a label is
something you'll need to do from time to time. The #< and
#> pseudo-ops do it for you.

Chained Files

LADS has two distinct personalities. So far we’ve been
discussing LADS as it comes out of the can, its native state
when you, or the Loader, BLOAD it in from disk. It assembles
and stores the results on screen (with .S), in RAM in bank 15
(.O), or to the printer (.P). Let’s call this mode RAMLADS
since it works exclusively in RAM.

This personality is most useful for testing routines which
are short enough for the source code to fit between $1C00 (the
default start of BASIC text area) and $2710 where the LADS
assembler starts in memory. But when source code gets fairly
large, it will either overwrite LADS, or LADS itself, which
stores labels during assembly moving down from $2710, will
overwrite the source code. In short, assembling source code
about 1K or longer will cause the source code and LADS to
compete for the same memory space and interfere with each
other.

For these larger programs, you should store your source
code on disk and, by using the .D pseudo-op at the start of
the source code, tell LADS to look on the disk drive for ma-
terial to assemble. (Cassette tape users will not be able to
switch DISKLADS on with the .D pseudo-op. They must use
RAMLADS and then save object code to tape via the monitor.
See SAVE in Chapter 3.)

When you insert .D into your source code, LADS trans-
forms itself; it modifies its actual structure and turns its atten-
tion to the disk drive for source code. Let’s call this second
personality DISKLADS. DISKLADS offers several benefits
when large programs are involved.

It is sometimes convenient to create several source code
subprograms, to break the ML program source code into sev-
eral pieces. An example of this is the LADS source code itself.
It's divided into a number of program files: Array, Equate,
Math, Pseudo, and so on. This way, you don’t need to load
the entire source code into the computer’s memory when you
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just want to work on a particular part of it. It also allows you
to assemble source code far larger than could fit into available
RAM. For example, LADS itself, with all its comments, has
source code which is 72K large. By the way, this creates an in-
teresting ratio between source and object code: After assembly,
LADS boils down to about 5K of runnable object code.

When using DISKLADS, you link the separate source
code files together into a chain. In the last line of each sub-
program you want to link, you put the linking pseudo-op
.FILE NAME (use no quotes) to tell the assembler which sub-
program to assemble next. Subprograms, chained together in
this fashion, will be treated as if they were one large program.

The final subprogram in the chain ends with the special
pseudo-op .END NAME, and this time the name is the file-
name of the first of the subprograms, the subprogram which
begins the chain. It’s like stringing pearls and then, at the end,
tying thread so that the last pearl is next to the first, to form a
necklace.

Notice however that when you turn on DISKLADS with
.D, you always need to include the .END pseudo-op, even if
you are assembling from just one, unlinked, source code file.
In that case (where you're working with a solo file), you don’t
use any linking .FILE pseudo-ops. Instead, refer the file to it-
self with . END NAME where you list the solo file’s name.

Here’s an illustration of how three subprograms would be
linked to form a complete program:

5 *= 2816
10 ; FIRSTSOURCE--first program in chain
20 ;its first line must contain the start address
30 .D FIRSTSOURCE FIRSTOBJECT
40 LDA #20
50 STA $0400
60 .FILE SECOND

Then you save this subprogram to disk (it’s handy to let
the first remark line in each subprogram identify the sub-
program’s filename):

DSAVE “FIRSTSOURCE

Next, you create SECOND, the next link in the chain. But
here, you use no starting address; you enter no *= since only
one start address is needed for any program:
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10 ; SECOND (IT'S A GOOD IDEA TO PUT THE NAME OF
THE FILE HERE)

20 INY:INX:DEY:DEX

30 .FILE THIRD

DSAVE “SECOND

Now write the final subprogram, ending it with the clasp
pseudo-op .END NAME which links this last subprogram to
the first:

10 ; THIRD
20 LDA #191:STA $0400
30 .END FIRSTSOURCE

DSAVE “THIRD

When you want to assemble this linked source code, if the
first file in the chain isn’t already in RAM memory, you
DLOAD “FIRSTSOURCE to show LADS the .D. Then press
F1 or type SYS 10000, and LADS will take it from there.

The format for .D is

.D sourcename objectname

RAMLADS will see the .D and change itself into
DISKLADS. After you've once transformed RAMLADS into
this new personality, it will locate source code on the disk files
and store object code to bank 1. After it has finished the
assembly, LADS will save (with replace) the object code to the
disk under the name you gave for the object file after .D. In
our three-file example above, LADS will save a file named
FIRSTOBJECT. Finally, LADS will reload itself and, thus,
change back into its RAMLADS personality. In other words,
LADS responds appropriately if there is .D in the source code.
If it doesn’t find one, it remains RAM-oriented.

DISKLADS operates somewhat differently from
RAMLADS. DISKLADS always switches on the .O pseudo-op
and saves the object code to RAM in bank 1. Thus (unlike
RAMLADS where you have to find a safe place to store object
code when using .0), with DISKLADS you can create an ML
program that resides anywhere between $0000 and $FFFF
(0-65535 decimal), and it will not interfere with LADS or
BASIC or anything else since it’s being stored into the pure
RAM of bank 1. (Remember, though, that extremely low
RAM—$0000-$03FF—is shared between banks.) Thus, your
source and object codes can be huge, as large as a RAM bank.
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Then, when assembly is finished, the object code is stored
to disk under the name you gave with .D (FIRSTOBJECT in
the example above). Use no quotation marks around filenames
for .D or .END or .FILE. If you forget to put .END or .FILE
when you’'ve used .D, LADS will remind you that it now
needs these linking commands. If you want to go back to
assembling smaller routines with RAMLADS, just start typing
in source code, but avoid .D. LADS changes personality only
when triggered with .D. Naturally, you don't use .FILE or
.END with RAMLADS. A

When DISKLADS has finished assembling the example
above by the disk method, there will be an ML program on
disk called FIRSTOBJECT. You can BLOAD it and SYS 2816
(that was the start address we gave this program), and the
newly assembled ML program will execute. Note that even
though LADS saved it to disk from bank 1, it will BLOAD into
bank 0 unless you specify otherwise with the BLOAD com-
mand. Also, DISKLADS always does a Save-with—-Replace,
and this allows you to keep testing versions without having to
rename each one. If you want to preserve a version, be sure to
RENAME it before assembling; it will be replaced at the end
of the assembly. You can always stop any assembly at any
time with the RUN/STOP key. If a file is being loaded when
you press RUN/STOP, just hold down the RUN/STOP key
until disk access finishes. Since no object code is saved to disk
until assembly is finished, any previous version of object code
will remain unreplaced on the disk.

While LADS is assembling in either mode, it will report
any errors by ringing the bell, displaying the line number
wherein the error occurred, and showing the offending source
code in reverse video. After assembly, it will tell you the total
number of errors, if any.

LADS also prints the starting address in hex of each file,
and DISKLADS prints LOADING when bringing the file in
from disk, and blanks the line while actually assembling.

Rules for LADS
Here are the rules you need to follow when writing ML for
LADS to assemble:

1. In general, all equate labels (labels using an equal sign) should
be defined at the start of your program.
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While this isn’t absolutely necessary for labels with
numbers above 255 (see SCREEN in the example below), it
is the best programming practice. It makes it easier for you
to modify your programs and simplifies debugging. LADS
itself locates all its equate labels in the subprogram Defs
(Appendix D), the first subprogram in its chain of source
code files.

What's more, it is necessary that any equate label with
a value lower than 256 be defined before any ML mnemon-
ics reference that label. So, to be on the safe side, just get
into the habit of putting all equate labels at the very start of
your programs:

10 *= 2816

20 ARRAYPOINTER = $FB; (251 decimal), a zero page address

30 OTHERPOINTER = $FD; (253 decimal), another zero page
address

40 ;

50 LDY #0:LDA $1

60 STA ARRAYPOINTER,Y

70 SCREEN = $0400

Notice that it’s permissible to define the label
SCREEN anywhere in your program. It's not a zero page
address. You do have to be careful, however, with zero page
addresses (addresses lower than 255). So most ML pro-
grammers make it a habit to define all their equates at the
start of their source code.

. Put only one pseudo-op on a line.

Don’t use a colon to put two pseudo-ops on a single
line:
10 *= 864
20 .O:NH Wrong
30.0 Right
40 NH  Right

The main exception to this is the .BYTE pseudo-op.
Normally, you'll set up messages with a zero at their ends
to delimit them, to show that the message is complete.
When you delimit messages with a zero, you don’t need to
know the length of the message; you just branch when you
come upon a zero:

10 *= 2816
20 SCREEN = $0400
30 ;
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40 LDY #0

50 LOOP LDA MESSAGE,Y:BEQ END; loading a zero signals
end of message.

60 STA SCREEN,Y:INY: JMP LOOP; LADS ignores spaces after
colon.

70 ; memmmenea- message area here ----------

80 MESSAGE .BYTE “PRINT THIS ON SCREEN":BYTE 0

Any embedded pseudo-ops like + or = or #> can be
used on multiple-statement lines. The pseudo-ops which
should be on a line by themselves are the I/O (input/
output) instructions which direct communication to disk,
screen, or printer, like .P, .S, .D, .END, and so forth. It's
also important to put .D at the start of your source code.

Generally, it's important that you space things cor-
rectly. Avoid leading spaces before semicolons (see lines 50
and 60 above for correct use of semicolons. Everything on a
line following a semicolon is ignored, so spaces after the
semicolon are fine. Also, if you wrote SCREEN= 864,
LADS would think that your label was screen= instead of
screen. So you need that space between the label and the
equal sign. Likewise, you need to put a single space between
labels, mnemonics, and arguments:

LOOP LDA MESSAGE

Running them together will confuse LADS.
LOOPLDA MESSAGE

and

LOOP LDAMESSAGE

are wrong.

Spaces within remarks are ignored. In fact, LADS ig-
nores everything within remarks, everything following a
semicolon on a line (see line 70). Thus, the semicolon
should come after anything you want assembled. You
couldn’t rearrange line 50 above by putting the BEQ END
after the remark message. It would be ignored because it
followed the semicolon.

Errant spacing, while it sometimes won't assemble
correctly, is generally not fatal. LADS can ignore some spac-
ing errors and will report error messages when it finds oth-
ers. LOOPLDA would result in an UNDEFINED LABEL
error message, for example. But it’s a good idea to get into
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the habit of putting colons and semicolons right up against
source code, with no extra spaces.

When using the text form of .BYTE, it’s up to you
whether you use a close quote:

50 MESSAGE .BYTE “PRINT THIS” Right
60 MESSAGE .BYTE “PRINT THIS Also right

. The first character of any label must be a letter, not a number.
LADS knows when it comes upon a label because a

number starts with a number; a label starts with a letter of

the alphabet:

10 *= $B00

20 LABEL = 255

30 LDA LABEL

40 LDA 255

Lines 30 and 40 accomplish the same thing and are
correctly written. It would confuse LADS, however, if you
wrote

20 5SLABEL = 255 Wrong

since the number 5 at the start of the word LABEL would
signal the assembler that it had come upon a number, not a
label. You can use numbers anywhere else in a label
name—just don’t put a number at the start of the name.
Also avoid using symbols like #, <, >, and *, and other
punctuation, shifted letters, or graphics symbols within la-
bels. Stick with ordinary alphanumerics:

10 5SLABEL Wrong

20 LABEL15 Right

30 *LABEL* Wrong

. Move the program counter forward, never backward.

The *= pseudo-op should be used to make space in
memory. If you set the PC below its current address, you
would be writing over previously assembled code:

10 *= $B00

20 LDA #15

30 *= $B50 Right

10 *= $B10

20 LDA #15

30 *= $B00 Wrong; you'll assemble right over the LDA #15.
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Modifying LADS

LADS is, of course, itself a machine language program. This
book and the optional disk include all the source code for
LADS. It’s heavily commented, so you can understand how
the assembler works and locate things you want to modify.

To change LADS, to customize your assembler, you'll
have to have typed in all the source code (or purchased this
book’s disk). Be sure to make a couple of backup disks in case
the first attempts at improvements are less than entirely
successful. Then, modify one or more of the subprograms such
as Eval or Indisk, and SCRATCH the earlier subprogram(s) on
disk and BLOAD or BOOT LADS. For additional safety, RE-
NAME “LADS” TO “OLDLADS” so that you'll have a work-
ing version of the assembler for any emergencies. Next,
DLOAD “DEFS128”, which is LADS's starting subprogram,
and SYS 10000. LADS will then create a new version of itself
with your modifications incorporated and save it to disk under
the name LADS.

LADS can assemble its own source code because, to an
assembler, source code is source code. It doesn’t have any
problems with self-regeneration nor does it harbor any
proscriptions against what is, after all, the ethically ambiguous
act of cloning.
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Commodore 128 Memory
Map

0-255 ($0000-$00FF) Zero Page

The numbers in brackets ([ ]) following each entry are the corresponding Commodore 64 loca-
tions. An asterisk in brackets ([s]) indicates that the location is identical in the 64. All addresses
are listed in both decimal and hexadecimal

WN=O

oo Ny ONUn

5-46
47-48
49-50
51-52
53-54
55-56
57-58

59-60
61-62

65-66
67-68
71-72

73-74
99-104

106-111

125-126
144
145
152

$00
$01
$02
$03-$04
$05
$06
$07
$08
$2D-$2E

$2F-$30
$31-$32
$33-$34
$35-$36
$37-$38
$39-83A

$3B-$3C
$3D-$3E

$41-$42
$43-$44
$47-$48

$49-$4A
$63-%68

$6A-$6F

$7D-$7E
$90
$91
$98

8502 I/0O port data direction register [*]

8502 I/O port data register [*]

Bank value storage for JMPFAR and JSRFAR
Program counter storage for JMPFAR and JSRFAR
Status register storage for JMPFAR and JSRFAR
Accumulator storage for JMPFAR and JSRFAR

X register storage for JMPFAR and JSRFAR

Y register storage for JMPFAR and JSRFAR
Pointer to start of BASIC program text (in bank 0)
[43-44/$2B-$2C]

Pointer to start of variables (in bank 1)
[45-46/$2D-$2E]

Pointer to start of arrays (in bank 1)
[47-48/$2F-$30]

Pointer to start of free memory (in bank 1)
[49-50/$31-$32]

Pointer to bottom of dynamic string storage (in bank
1) [51-52/$33-$34]

Pointer to most recently used string (in bank 1)
[53-54/$35-$36]

Pointer to top of dynamic string storage (in bank 1)
[55-56,/$37-$38]

Current BASIC line number [57-58/$39-$3A]
Pointer to current BASIC text character
[122-123/$7A-$7B]

Current DATA line number [63-64/$3F-$40]
Pointer to current DATA item [65-66/$41-$42]
Pointer to current BASIC variable name
[69-70/$47-$48)

Pointer to current variable contents

Floating-point accumulator 1 (FAC1)
[97-102/$61-$66]

Floating-point accumulator 2 (FAC2)
[105-110/$69-$6E]

Pointer into BASIC runtime stack at $0800-$09FF
Status byte for tape and serial I/0 [*]

STOP key flag (127 = RUN/STOP key pressed) [*]
Number of files currently opened [*]
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153 $99 Current input device [*]

154 $9A Current output device [*]

157 $9D Kernal message flag (192 = Kernal control and error
messages displayed, 128 = only control messages
displayed, 64 = only error messages displayed, 0 =
no messages displayed) [*]

160-162 $A0-$A2 Software jiffy clock [*]

172-173 $AC-$AD Working pointer for LOAD, SAVE, and VERIFY [*]

174-175 $AE-$AF Ending address for LOAD, SAVE, and VERIFY [*]

178-179 $B2-$B3  Pointer to cassette buffer [*]

183 $B7 Length of current filename [*]

184 $B8 Current logical file number (channel) [*]

185 $B9 Current secondary address [*]

186 $BA Current device number [*]

187-188 $BB-$BC  Address of current filename [*]

193-195 $C1-$C2 Starting address for SAVE, LOAD, and VERIFY [*]

195-196 $C3-$C4 Starting address of memory to be loaded or saved to
tape [*]

Also used as a pointer during block memory moves

198 $C6 Bank for current LOAD, SAVE, or VERIFY operation

199 $C7 Bank where current filename is found

200-201 $C8-$C9 Pointer to RS-232 input buffer [247-248 /$F7-$F8]

202-203 $CA-$CB Pointer to RS-232 output buffer [249-250/$F9-$FA]

204-204 $CC-$CD Pointer to current keyboard lookup table (in ROM)
[243-244 /$F3-$F4]

208 $D0 Number of characters in keyboard buffer [198/$C6]

211 $D3 Current SHIFT, CONTROL, Commodore, and ALT
key status [653/028D]

212 $D4 Matrix coordinate of current key pressed [203/$CB]

213 $D5 Matrix coordinate of last key pressed [197 /$C5]

215 $D7 Screen width flag (0 = 40 columns, 128 = 80
columns)

216 $D8 Text/graphics mode flag for 40-column screen:

224 = graphic 4 (split multicolor bitmapped and
text)
160 = graphic 3 (multicolor bitmapped)
96 = graphic 2 (split bitmapped and text)
32 = graphic 1 (bitmapped)
0 = graphic 0 (text)

217 $D9 Shadow register for CHREN bit of location $01 (4 =
1/0 block at $D000-$DFFF, 0 = character ROM at
$D000-$DFFF)

224-225 $EO-$E1  Pointer to current text screen line
[209-210/$D1-$D2]

226-227 $E2-$E3  Pointer to current color (attribute) line
[243-244/$F3-$F4]

228 $E4 Bottom line of current window

229 $E5 Top line of current window

230 $E6 Left margin of current window

231 $E7 Right margin of current window

232 $E8 Line for input [201/$C9]
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233 $E9 Starting logical column for input [202/$CA]

234 $EA Ending logical column for input [200/$C8]

235 $EB Current cursor line [214/$D6]

236 $EC Current cursor column [211/$D3]

237 $ED Maximum number of lines in screen

238 $EE Maximum number of columns in a line [213/$D5]

243 $F3 Reverse mode flag (if nonzero, characters are printed
in reverse video) [199/$C7]

244 $F4 Quote mode flag (if nonzero, quote mode is in effect)
[212/$D4]

245 $F5 Insert mode flag (if nonzero, number of inserts pend-
ing) [216/$D8]

247 $F7 Enable/disable character set switching with SHIFT-
Commodore (128 = disable switching, 0 = enable
switching) [657/$0291]

248 $F8 Enable/disable screen scrolling (128 = no scrolling,
0 = allow scrolling)

251-254 $FB-$FE  Unused [251-254/$FB-$FE]

256-511 ($0100-$01FF) Page One—System Stack
512-1023 ($0200-$03FF) Common RAM Vectors and Routines

512-673
674-686
687-701
702-716
717-738
739-761
768-769
770-771
772-773
774-775
776-777
778-779

780-781
782-783

784-785
788-789

$0200-$02A1
$02A2-$02AE
$02AF-$02BD
$02BE-$02CC
$02CD-$02E2
$02E3-$02F9
$0300-$0301
$0302-$0303
$0304-$0305
$0306-$0307
$0308-$0309
$030A-$030B

$030C-$030D
$030E-$030F

$0310-$0311
$0314-$0315

BASIC input buffer (161 bytes)
[512-600/$0200-$0258]

INDEFET routine to get a character from any bank
INDSTA routine to store a character in any bank
INDCMP routine to compare characters in any
banks

JSRFAR routine to jump to a subroutine in any
bank and return to the calling bank

JMPFAR routine to jump to a routine in any
bank without return

IERROR vector to BASIC error message routine
*

IMAIN vector to main BASIC immediate mode
loop [*]

ICRNCH vector to routine that tokenizes a line
of BASIC text [*]

IQPLOP vector to routine that lists a token as
characters [*]

IGONE vector to routine that executes a BASIC
statement token [*]

IEVAL vector to routine that evaluates an
arithmetic expression [*]

Vector to routine that tokenizes a two-byte token
Vector to routine that lists a two-byte token as
characters

Vector to routine that executes a two-byte BASIC
statement token

CINV vector to IRQ handler routine [*]
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790-791 $0316-$0317 CBINV vector to BRK handler routine [*]
792-793  $0318-$0319 NMINV vector to NMI handler routine [*]
794-795 $031A-$031B IOPEN vector to the Kernal OPEN routine [*]
796-797 $031C-$031D ICLOSE vector to the Kernal CLOSE routine [*]
798-799  $031E-$031F ICHKIN vector to the Kernal CHKIN routine [*]
800-801 $0320-$0321 ICKOUT vector to the Kernal CKOUT routine [*]
802-803  $0322-$0323 ICLRCH vector to the Kernal CHRCH routine [*]
804-804 $0324-$0325 IBASIN vector to the Kernal BASIN routine [*]
806-807 $0326-$0327 IBSOUT vector to the Kernal BSOUT routine [*]
808-809 $0328-$0329  ISTOP vector to the Kernal STOP routine [*]
810-811 $032A-$032B IGETIN vector to the Kernal GETIN routine [*]
812-813  $032C-$032D ICLALL vector to the Kernal CLALL routine [*]
816-817 $0330-$0331 ILOAD vector to the Kernal LOAD routine [*]
818-819 $0332-$0333  ISAVE vector to the Kernal SAVE routine [*]
842-851 $034A-$0353 Keyboard input buffer [631-640/$0277-$0280]
866-875 $0362-036B  Table of logical file numbers
[601-610/$0259-$0262]
876-885 $036C-$0375 Table of device numbers for open files
[611-620,/$0263-$026C)
886-895 $0376-$037F  Table of secondary addresses for open files
[621-630/$026D-$0276]
896-926  $0380-$039E  Routine to get next character of BASIC program
text from bank 0 (CHRGET) [115-138/$73-$8A]
902 $0386 Entry point in CHRGET to retrieve previous
character (CHRGOT) [121/$79]
927-938  $039F-$03AA Indirect fetch from bank 0 for ROM routines
939-950 $03AB-$03B6 Indirect fetch from bank 1 for ROM routines
951-959  $03B7-$03BF  Fetch from bank 1 for ROM routines; uses
$24-$25 as pointer
960-968 $03C0-$03C8 Fetch from bank 0 for ROM routines; uses
$26-$27 as pointer
969-977  $03C9-$03D1 Fetch from bank 0 for ROM routines; uses

$3D-$3E as pointer

1024-2047 ($0400-$07FF) Bank 0: 40-Column Text Screen Memory
2048-7167 ($0800-$1BFF) Bank 0: BASIC and Kernal Working

Storage
2048-2559

2560-2561
2562
2563
2565-2566
2567-2568
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$0800-$09FF

$0A00-$0A01

$0A02
$0A03

$0A05-$0A06
$0A07-$0A08

BASIC stack: pointers for DO-LOOP, BEGIN-
BEND, etc.

System restore vector (points to BASIC warm-
start routine)

Flag to indicate that system vector has been
initialized

PAL/NTSC flag (0 = NTSC video, 1 = PAL
video) [678/$02A6]

Pointer to bottom of memory used for pro-
gram text (in bank 0) [641-642/$0281-$0282]
Pointer to top of memory used for variables
(in bank 1) [643-644/$0283-$0284]
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2576
2577
2578-2579

2580
2582-2583

2584
2585
2586
2587
2592
2594

2624-2687

2752

2753-2756
2816-3007
2816-3071
3072-3327
3328-3583
3584-4095
4096-4105
4106-4351
4616

4617-4618
4624-4625

4626-4627
4632-4634

$0A10
$0A11
$0A12-$0A13

$0A14
$0A16-$0A17

$0A18
$0A19
$0A1A
$0A1B
$0A20
$0A22

$0A40-$0A7F

$0ACO
$0AC1-$0AC4
$0B00-$0BBF
$0B00-$0BFF
$0C00-$0CFF
$0D00-$0DFF
$0E00-$OFFF
$1000-$1009
$100A-$10FF
$1208
$1209-$120A
$1210-$1211

$1212-$1214
$1218-$121A

RS-232 control register [659/$0293]

RS-232 command register [660/$0294]
RS-232 user-defined baud rate
[661-662/$0295-$0296]

RS-232 status register (663 /$0297]

RS-232 baud timing constant value
[665-666/$0299-$029A]

Index to last character in the RS-232 input
buffer [667 /$029B]

Index to first character in the RS-232 input
buffer [668/$029C]

Index to last character in the R5-232 output
buffer [669/$029D]

Index to first character in the RS-232 output
buffer [670/$029E]

Maximum number of characters in the key-
board buffer [649,/$0289]

Enable/disable key repeating (128 = all keys
repeat, 64 = no keys repeat, 0 = space,
INST/DEL, and cursor keys delete)
[650/$028A]

Storage area for screen editor variables during
40/80-column screen display exchanges
Number of function ROMs present

Table of function ROM identifier bytes
Cassette buffer [828-1019/$33C-$03FB]
Holds image of boot sector during disk boot
RS-232 input buffer

RS-232 output buffer

Sprite definition area

Table of indexes to function key definitions
Storage area for function key definitions
Error number for last error

Line number where last error occurred
Pointer to end of BASIC program text (in
bank 0)

Pointer to top of memory for BASIC program
text (in bank 0)

JSR and address for USR statement

2024-65279 ($0800-$FEFF) Bank 1: BASIC Variable Storage
7168-65279 ($1C00-$FEFF) Bank 0: BASIC Program Text Storage

7168-16383 ($1C00-$3FFF) Bank 0: 40-Column High-Resolution
Screen and Color Memory (if used)

7168-8191

$1C00-$1FFF Color memory for bitmapped screen
8192-16383 $2000-$3FFF Bitmap for high-resolution screen

16348-45055 ($4000-$AFFF) BASIC ROM
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16343 $4000 BASIC cold-start vector
16346 $4003 BASIC warm-start vector
16349 $4006 BASIC IRQ entry vector

45056-49151 ($B000-$BFFF) Machine Language Monitor ROM

45056 $B000 Monitor cold-start vector
45059 $B003 Monitor BRK entry vector

49152-53247 ($C000-$CFFF) Screen Editor ROM

Editor Jump Table

49152 $CO000 Initialize screen editor and video chips (Kernal CINT)

49155 $C003 Display a character

49158 $C006 Get a key from keyboard buffer (GETIN from keyboard)

49161 $C009 Get a character from the screen (BASIN from screen)

49164 $CO0C Print a character on the screen (BSOUT to screen)

49167 $COOF Return number of lines and columns in current window
(Kernal SCRORG)

49170 $CO012 Scan keyboard for keypress (Kernal KEY)

49173 $C015 Check for key repeat

49176 $C018 Read or set cursor position (Kernal PLOT)

49179 $CO01B Move cursor on 80-column screen

49182 $CO1E Handle ESC key sequences

49185 $C021 Define a programmable key (Kernal PFKEY)

49188 $C024 Editor IRQ entry vector

49191 $C027 -Initialize character set for 80-column display (Kernal
DLCHR)

49194 $CO02A Switch between 40- and 80-column displays (Kernal
SWAPPER)

49197 $C02D Set window boundaries

53248-57343 ($D000-$DFFF) Character ROM

53248-54271
54272-55295

55296-56319
56320-57343

$D000-$D3FF
$D400-$D7FF

$D800-$DBFF
$DCO0-$DFFF

Uppercase/graphics set definitions (normal)
Uppercase/graphics set definitions (reverse
video)

Lowercase/uppercase set definitions
(normal)

Lowercase/uppercase set definitions (reverse
video)

53248-57343 ($D000-$DFFF) 1/0O Block

53248-53296
54272-54300
54528-54539
54784-54785
55296-56319
56320-56335
56576-56591
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$D000-$D030
$D400-$D41C
$D500-$D50B
$D600-$D601
$D800-$DBFF

VIC 40-column video chip

SID sound chip

MMU memory management chip
8563 80-column video chip

Color memory for 40-column screen

$DC00-$DCOF CIA input/output chip 1
$DD00-$DDOF CIA input/output chip 2
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56832-57087 $DEO0-$DEFF Expansfon i/0 slot (unused)
57088-57098 $DF00-$DFOA REC expansion memory controller chip in

memory expansion module

57344-65535 ($E000-$FFFF) Kernal ROM

65351
65354
65357
65360
65363
65366
65369
65372
65375
65378
65381
65384
65387
65390

65393
65396
65399
65402
65405

$FF47
$FF4A
$FF4D
$FF50
$FF53
$FF56
$FF59
$FF5C
$FF5F
$FF62
$FF65
$FF68
$FF6B
$FF6E

$FF71
$FF74
$FF77
$FF7A
$FF7D

- New Kernal Jump Table Entries for the 128

SPIN_SPOUT Set serial ports for fast input or output
CLOSE_ALL Close all files to a device

C64MODE

Enter 64 mode

DMA_CALL Send command to DMA device
BOOT_CALL Boot a program from disk

PHOENIX
LKUPLA
LKUPSA
SWAPPER
DLCHR
PFKEY
SETBNK
GETCFG
JSRFAR

JMPFAR
INDFET
INDSTA
INDCMP

PRIMM

Initialize function ROM cartridges

Look up logical file number in file tables
Look up secondary address in file tables
Switch between 40- and 80-column displays
Initialize character set for 80-column display
Assign a string to a function key

Set banks for 1/O operations

Get byte to configure MMU for any bank
Jump to a subroutine in any bank, with re-
turn to the calling bank

Jump to a routine in any bank, with no re-
turn to the calling bank

Load a byte from an address (offset of Y) in
any bank

Store a byte to an address (offset of Y) in
any bank

Compare a byte to the contents of an ad-
dress (offset of Y) in any bank

Print the string in memory immediately
following the JSR to this routine

Standard Commodore Kernal Jump Table
(Also found on the Commodore 64, VIC-20, 16, and Plus/4)

65409
65412
65415
65418

65421
65424
65427
65430
65433
65436
65439
65442

65445
65448

$FF81
$FF84
$FF87
$FF8A

$FF8D
$FF90
$FF93
$FF96
$FF99
$FFIC
$FF9F
$FFA2

$FFAS
$FFA8

CINT
IOINIT
RAMTAS
RESTOR

VECTOR
SETMSG
SECND
TKSA
MEMTOP
MEMBOT
KEY
SETTMO

ACPTR
CIOUT

Initialize screen editor and video chips
Initialize I/O devices

Initialize RAM and buffers

Restore default values for Kernal indirect RAM
vectors

Set or copy Kernal indirect RAM vectors
Enable or disable Kernal messages

Send secondary address

Send secondary address to talker

Set or read top of RAM

Set or read bottom of RAM

Read the keyboard

Enable/disable IEEE timeouts (unused in the
128)

Input a byte from the serial bus

Output a device to the serial bus

273



Appendix C

65451 $FFAB UNTLK  Send untalk command to serial device

65454 $FFAE UNLSN  Send unlisten command to serial device

65457 $FFB1 LISTN Send listen command to serial device

65460 $FFB4 TALK Send talk command to serial device

65453 $FFB7 READSS Read the I/O status

65466 $FFBA SETLFS  Set channel, device number, and secondary
address

65469 $FFBD SETNAM Specify length and address of current filename

65472 $FFCO0 OPEN Open a logical file

65475 $FFC3 CLOSE  Close a logical file

65478 $FFC6 CHKIN  Set a specified channel for input

65481 $FFC9 CKOUT  Set a specified channel for output

65484 $FFCC CLRCH  Clear all channels

65487 $FFCF BASIN Retrieve a byte from the input channel

65490 $FFD2 BSOUT  Send a byte to the output channel

65493 $FFD5 LOAD Load or verify data from device

65496 $FFD8 SAVE Save contents of memory to a device

65499 $FFDB SETTIM  Set jiffy clock

65502 $FFDE RDTIM  Read jiffy clock

65505 $FFE1 STOP Read RUN/STOP key status

65508 $FFE4 GETIN Get a byte from the input buffer

65511 $FFE7 CLALL  Close all files and channels

65514 $FFEA UDTIM  Update jiffy clock

65517 $FFED SCRORG Get size of current screen window

65520 $FFF0 PLOT Set or read cursor position

65523 $FFF3 IOBASE  Get location of 1/O block

65280-65284 ($FF00-$FF04) Common MMU Registers
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Appendix D

LADS Source Code

The source code for LADS (Label Assembly Development Sys-
tem) is divided into 13 sections, each of which accomplishes a
particular task for the assembler. All subroutines and most in-
dividual instructions are commented. If you are interested in
studying or customizing the assembler, here is a brief over-
view of functions of the various sections:

¢ Defs. All the labels for zero page pointers and ROM routines
used by the assembler are defined here. _

* Eval. The main routine. Most other sections of the assembler
are called from within Eval to perform their various services.
Eval starts assembly (line 30) and ends assembly (line 4260).
In between, Eval takes each line of source code apart,
determining the intended addressing mode.

¢ Equate. Builds the database of labels during the assembler’s
first pass through the source code.

o Array. Searches through the label database on the second
pass and locates a label name and its numeric value.

* Openl. Loads or saves disk files when DISKLADS is invoked
with .D

 Findmn. A search routine to look through the list of 8502
mnemonics (in Tables below) to find the correct opcode.

» Getsa. Locates the start address as the first thing in the
source code. Also contains the byte-by-byte source code
reading routine, CHARIN.

» Valdec. Transforms ASCII numerals from the source code
into integers. Thus, the characters 2 5 become the number 25
after Valdec finishes with them.

¢ Indisk. The main input routine. Each line of source code is
brought in, analyzed in various ways, and prepared for Eval.

» Math. Handles the + pseudo-op.

« Printops. Keeps track of our location within the object code
and formats screen and printer output in various ways.

« Pseudo. Handles all pseudo-ops except + *= and .BYTE.
The .D section transforms RAMLADS into DISKLADS.

» Tables. LADS'’s internal database. Contains lookup tables of
mnemonics, opcodes, and addressing-mode categories. In-
cludes flags, pointers, error messages, and registers used by
various routines.
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Appendix E

Library of Subroutines

Here is a collection of techniques you'll need to use in many
of your ML programs. Those techniques which are not inher-
ently easy to understand are followed by an explanation.

Increment and Decrement Double-Byte Numbers
You'll often want to raise or lower a number by 1. To in-
crement a number, you add 1 to it: Incrementing 5 results in 6.
Decrementing lowers a number by 1. Single-byte numbers are
easy; you just use INC or DEC. But you'll often want to in-
crement two-byte numbers which hold addresses, game
scores, pointers, or some other number which requires two
bytes. Two bytes, ganged together and seen as a single num-
ber, can hold values from 0 ($0000) up to 65535 ($FFFF).
Here’s how to raise a two-byte number by 1, to increment it:

(Let’s assume that the number you want to increment or
decrement is located in addresses $0605 and $0606, and the
ML program segment performing the action is located at
$5000.)

5000 INCREMENT INC $0605 Raise the low byte.

5003 BNE GOFORTH If not zero, leave high byte alone.
5005 INC $0606 Raise high byte.
5008 GOFORTH... Continue with program.

The trick in this routine is the BNE. If the low byte isn’t
raised to 0 (from 255), we don’t need to add a carry to the
high byte, so we jump over it. However, if the low byte does
turn into a 0, the high byte must then be raised. This is similar
to the way an ordinary decimal increment creates a carry
when you add 1 to 9 (or to 99 or 999). The lower number
turns to 0, and the next column over is raised by 1.

To double-decrement, you need an extra step. The reason
it’s more complicated is that the 8502 chip has no way to test
if you've crossed over to $FF, down from $00. BNE and BEQ
will test if something is 0, but nothing tests for $FF. (The N
flag is turned on when you go from $00 to $FF, and BPL or
BMI could test it.) The problem with it, though, is that the N
flag isn’t limited to sensing $FF. It is sensitive to any number
higher than 127 decimal ($7F).
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So, here’s the way to handle double-deckers:

5000 LDA $0605 Load in the low byte, affecting the
zero flag.

5003 BNE FIXLOWBYTE If it’s not zero, lower it, skipping
high byte.

5005 DEC $0606 Zero in low byte forces this.

5008 FIXLOWBYTE DEC $0605 Always dec the low byte.

Here we always lower the low byte, but lower the high
byte only when the low byte is found to be zero. If you think
about it, that’s the way any subtraction would work.

Comparison
Comparing a single-byte against another single-byte is easily
achieved with CMP. Double-byte comparison can be handled
this way:

(Assume that the numbers you want to compare are lo-
cated in addresses $0605,0606 and $0700,0701. The ML pro-
gram segment performing the comparison is located at $5000.)

5000 SEC

5001 LDA $0605 Low byte of first number

5004 SBC $0700 Low byte of second number

5007 STA $0800 Temporary holding place for this result

500A LDA $0606 High byte of first number

500D SBC $0701 High byte of second number, leave result in A
5010 ORA $0800 Results in zero if A and $0800 were both zero

The flags in the status register are left in various states
after this routine—you can test them with the B instructions
and branch according to the results. The ORA sets the Z (zero)
flag if the results of the first subtraction (left in $0800) and the
second subtraction (in A, the accumulator) were both zero.
This would happen only if the two numbers tested were
identical, and BEQ would test for this (Branch if EQual).

If the first number is lower than the second, the carry flag
would have been cleared, so BCC (Branch if Carry Clear) will
test for that possibility. If the first number is higher than the
second, BCS (Branch if Carry Set) will be true. You can there-
fore branch with BEQ for =, BCC for <, and BCS for >. Just
keep in mind which number you're considering the first and
which the second in this test.
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Double-Byte Addition
CLC ADC and SEC SBC will add and subtract one-byte num-
bers. To add two-byte numbers, use:

(Assume that the numbers you want to add are located in
addresses $0605,0606 and $0700,0701. The ML program seg-
ment performing the addition is located at $5000.)

5000 CLC Always do this before any addition.
5001 LDA $0605
5004 ADC $0700
5007 STA $0605 The result will be left in $0605,0606.
500A LDA $0606
500D ADC $0701
5010 STA $0606

It’s not necessary to put the result on top of the number
in $0605,0606—you can put it anywhere. But you'll often be
adding a particular value to another and not needing the orig-
inal any longer—adding ten points to a score for every blasted
alien is an example. If this were the case, following the logic
of the routine above, you would have a 10 in $0701,0702:

0701 0A The ten points you get for hitting an alien
0702 00

You’d want that 10 to remain undisturbed throughout the
game. The score, however, keeps changing during the game
and, held in $0605,0606, it can be covered over, replaced with
each addition.

Double-Byte Subtraction
This is quite similar to double-byte addition. Since subtracting
one number from another is also a comparison of those two
numbers, you could combine subtraction with the double-byte
comparison routine above (using ORA). In any event, this is
the way to subtract double-byte numbers. Be sure to keep
straight which number is being subtracted from the other.
We'll call the number being subtracted the second number.
(Assume that the number you want to subtract—the “sec-
ond number’’—is located in addresses $0700,0701, and that
the number it is being subtracted from—the “’first number”—
is held in $0605,0606. The result will be left in $0605,0606.
The ML program segment performing the subtraction is lo-
cated at $5000.)
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5000 SEC Always do this before any subtraction
5001 LDA $0605 Low byte of first number

5004 SBC $0700 Low byte of second number

5007 STA $0605 Result will be left in $0605,0606
500A LDA $0606 High byte of first number

500D SBC $0701 High byte of second number

5010 STA $0606 High byte of final result

Multibyte Addition and Subtraction
Using the methods for adding and subtracting illustrated above,
you can manipulate larger numbers than can be held within
two bytes (65535 is the largest possible two-byte integer).
Here’s how to subtract one four-byte-long number from another.
The locations and conditions are the same as for the two-byte
subtraction example above, except the “first number” (the
minuend) is held in the four-byte chain, $0605,0606,0607,0608,
and the “second number” (the subtrahend, the number being
subtracted from the first number) is in $0700,0701,0702,0703.
Also observe that the most significant byte is held in
$0703 and $0608. We'll use the Y register for indirect Y
addressing, four bytes in zero page as pointers to the two
numbers, and the X register as a counter to make sure that all
four bytes are dealt with. This means that X must be loaded
with the length of the chains we're subtracting—in this case, 4.

5000 LDX #4 Length of the byte chains.
5002 LDY #0 Set Y...
5004 SEC always before subtraction.

5005 LOOPLDA (FIRST),Y
5007 SBC (SECOND)Y

5009 STA (FIRST)Y The answer will be left in $0605-$0608.
500B INY Raise index to chains.

500C DEX Lower counter.

5010 BNE LOOP Haven't yet done all four bytes.

Before this will work, the pointers in zero page must have
been set up to allow the indirect Y addressing. This is one way
to do it:

2000 FIRST = $FB Define zero page pointers at $FB and $FD.
2000 SECOND = $FD

2000 SETUP LDA #5 Set up pointer to $0605.

2002 STA FIRST

2004 LDA #6

2006 STA FIRST+1
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2008 LDA #0 Set up pointer to $0700.
200A STA SECOND

200C LDA #7

200E STA SECOND+1

Multiplication
X2

ASL (no argument used, “accumulator addressing mode’’) will
multiply the number in the accumulator by 2.

X3

To multiply by 3, use a temporary variable byte we'll call
TEMP.

5000 STA TEMP Put the number into the variable.

5003 ASL Multiply it by 2.
5004 ADC TEMP (X *2 + X = X * 3)—the answer is in A.

X 4
To multiply by 4, just ASL twice.

5000 ASL *2
5001 ASL * 2 again

X 4 (Two Byte)

To multiply a two-byte integer by 4, use a two-byte variable
we’ll call TEMP and TEMP+1. .

5000 ASL TEMP Multiply the low byte by 2...

5003 ROL TEMP+1 moving any carry into the high byte.
5006 ASL TEMP Multiply the low byte by 2 again.

5009 ROL TEMP+1 Again acknowledge any carry.

X 10
To multiply a two-byte integer by 10, use an additional two-
byte variable we’ll call STORE.

5000 First, put the number into STORE for
safekeeping.

5000 LDA TEMP:STA STORE:LDA TEMP+1:STA STORE+1

500C Then multiply it by 4.

500C ASL TEMP Multiply the low byte by 2...

500F ROL TEMP+1 moving any carry into the high byte.
5012 ASL TEMP Multiply the low byte by 2 again.

5015 ROL TEMP+1; Again acknowledge any carry.

5018 Then add the original, resulting in X * 5.

347



Appendix E

5018 LDA STORE

501B ADC TEMP

501E STA TEMP

5021 LDA STORE+1

501D ADC TEMP+1

5024 STA TEMP+1

5027 Then just multiply by 2 since (5 * 2 = 10)
5027 ASL TEMP

502A ROL TEMP+1

xX?

To multiply a two-byte integer by other odd values, just use a
similar combination of addition and multiplication which re-
sults in the correct amount of multiplication.

X 100

To multiply a two-byte integer by 100, just go through the
above subroutine twice.

X 256

To multiply a one-byte integer by 256, just transform it into a
two-byte integer.

- 5000 LDA TEMP
5003 STA TEMP+1
5006 LDA #0

5008 STA TEMP

Division

=+ 2

LSR (no argument used, “accumulator addressing mode”) will
divide the number in the accumulator by 2.

+ 4
To divide by 4, just LSR twice.

5000 LSR /2
5001 LSR /2 again

-+ 4 (Two Byte)
To divide a two-byte integer, called TEMP, by 2:

5000 LSR TEMP+1 Shift high byte right...
5001 ROR TEMP pulling any carry into the low byte.
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Appendix F

Typing In LADS

LADS is a very long program. The directions for typing it in
are listed below. For those who prefer not to type it in, it can
be purchased on disk, along with many of the other programs
in this book, by calling COMPUTE! Publications toll-free at 1-
800-346-6767 (in New York, call 1-212-887-8525) or by using
the coupon in the back of this book. Be sure to state that you
want the disk for the book 128 Machine Language for Beginners.

In order to make it as easy as possible to type in LADS,
we’'ve included two program entry aids written in BASIC:
“The Automatic Proofreader” and “MLX.” To assist you in
understanding how to enter these programs, COMPUTE! has
established the following listing conventions.

Generally, BASIC program listings like the one for MLX
will contain words within braces which spell out any special
characters: {DOWN} means to press the cursor-down key; {5
SPACES} means to press the space bar five times.

To indicate that a key should be shifted (press the key
while holdmg down the SHIFT key), the key will be under-
lined in our listings. For example, S means to type the S key
while holding the SHIFT key. This would appear on your
screen as a heart symbol. If you find an underlined key en-
closed in braces (for example, {10 N}), you should type the
key as many times as indicated. In that case, you would enter
ten shifted N’s.

If a key is enclosed in special brackets, [<>], you should
hold down the Commodore key while pressing the key inside
the special brackets. (The Commodore key is the key in the
lower left corner of the keyboard.) Again, if the key is pre-
ceded by a number, you should press the key as many times
as indicated; [<9@>] means type Commodore-@ nine times.

Refer to Figure F-1 when entering cursor and color control
keys:
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Figure F-1. Keyboard Conventions

When You When You
Read: Press: See: Read: Press: See:
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oey e[ ] (m)  [m][n) W
< = E
T [ =
Typing In LADS

Before you can enter LADS, you must first enter the “Machine
Language Editor” program (MLX), Program F-2. MLX will
allow you to enter the LADS object code without a mistake. It
is therefore extremely important that MLX be entered cor-
rectly. To assist you in typing in MLX you should use “The
Automatic Proofreader.” Here are the steps you should follow
to enter LADS.

1. Read the directions for using the Automatic Proofreader
below.

2. Type in Program F-1, the Automatic Proofreader, and save
it to disk or tape.

3. Activate the Automatic Proofreader and type in and save
Program F-2, MLX, checking each line with the Automatic
Proofreader as you finish typing it in.
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Appendix F

. Read the directions for using MLX.

. Run MLX and begin entering the object code for LADS,

Program F-3.

. When you have finished entering the LADS object code,
use the Save option of MLX to save a copy.

. You are now ready to BLOAD LADS.

. Type in and save Program F-4, using the filename LOADER.
If you have a 1571 disk drive, use the ““Autoboot Maker”
utility from the Test/Demo Disk that came with the 1571
drive to make “Loader” run when you turn on your system.

[’ N ] [¢)) U

The Automatic Proofreader
Philip I. Nelson

“The Automatic Proofreader” helps you type in program list-
ings without typing mistakes. It's a short error-checking pro-
gram that conceals itself in memory and adheres to your
Commodore’s operating system. Each time you press RETURN
to enter a program line, the Proofreader displays a two-letter
checksum in reverse video at the top of your screen. If the
checksum on your screen doesn’t match the one in the printed
listing, you’ve typed the line incorrectly—it’s that simple. You
don’t have to use the Proofreader to enter printed listings, but
doing so greatly reduces your chances of making a typo.

Getting Started
First, type in the Automatic Proofreader program exactly as it
appears in the listing. Since the Proofreader can't check itself,
type carefully to avoid mistakes. Don’t omit any lines, even if
they contain unfamiliar commands or you think they don’t ap-
ply to your computer. As soon as you're finished typing the
Proofreader, save at least two copies on disk or tape before
running it the first time. This is very important because the
Proofreader erases the BASIC portion of itself when you run
it, leaving only the machine language portion in memory.
When that’s done, type RUN and press RETURN. After
announcing which computer it’s running on, the Proofreader
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installs the ML routine in memory, displays the message
PROOFREADER ACTIVE, erases the BASIC portion of itself,
and ends. If you type LIST and press RETURN, you'll see that
no BASIC program remains in memory. The computer is ready
for you to type in a new BASIC program.

Entering Programs

Once the Proofreader is active, you can begin typing in a
BASIC program as usual. Every time you finish typing a line
and press RETURN, the Proofreader displays a two-letter
checksum (reverse-video letters) in the upper left corner of the
screen. Compare this checksum with the two-letter checksum
printed to the left of the corresponding line in the program
listing. If the letters match, it’s almost certain the line was
typed correctly. If the letters don’t match, check for your mis-
take and correct the line.

The Proofreader ignores spaces that aren’t enclosed in
quotation marks, so you can omit spaces (or add extra ones)
between keywords and still see a matching checksum. For ex-
ample, these two lines generate the same checksum:

10 PRINT“THIS IS BASIC”
10 PRINT “THIS IS BASIC”

However, since spaces inside quotation marks are almost
always significant, the Proofreader pays attention to them. For
instance, these two lines generate different checksums:

10 PRINT“THIS IS BASIC”
10 PRINT“THIS ISBA s1C”

A common typing mistake is transposition—typing two
successive characters in the wrong order, like PIRNT instead
of PRINT or 64378 instead of 64738. A checksum program
that adds up the values of all the characters in a line can’t
possibly detect transposition errors (it can only tell whether
the right characters are present, regardless of what order
they’re in). Because the Proofreader computes the checksum
with a more sophisticated formula, it is also sensitive to the
position of each character within the line and thus catches
transposition errors.

The Proofreader does not accept keyword abbreviations
(for example, ? instead of PRINT). If you prefer to use abbrevi-
ations, you can still check the line with the Proofreader: Sim-
ply LIST the line after typing it, move the cursor back onto
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the line, and press RETURN. LISTing the line substitutes the
full keyword for the abbreviation and allows the Proofreader
to work properly. The same technique works for rechecking a
program you've already typed in: Reload the program, LIST
several lines on the screen, and press RETURN over them.

Do not use any GRAPHIC commands while the Proofreader
is active. When you activate a command like GRAPHIC 1, the
computer moves everything at the start of BASIC program
space—including the Proofreader—to another memory area,
causing the Proofreader to crash. The same thing happens if
you run any program that contains a GRAPHIC command.
The Proofreader deallocates any graphics areas before install-
ing itself in memory, but you are responsible for seeing that
the computer remains in this configuration.

Though the Proofreader doesn’t interfere with other
BASIC operations, it's always a good idea to disable it before
running any other program. Some programs may need the
space occupied by the Proofreader’s ML routine or may create
other memory conflicts. However, the Proofreader is purposely
made difficult to dislodge: It’s not affected by tape or disk op-
erations, or by pressing RUN/STOP-RESTORE. The simplest
way to disable it is to turn the computer off, then on again.

Machine Language Editor, MLX

Ottis R. Cowper

“MLX" is a new way to enter long machine language pro-
grams without a lot of fuss. MLX lets you enter the numbers
from a special list that looks similar to BASIC DATA state-
ments. It checks your typing on a line-by-line basis. It won't
let you enter invalid characters or let you continue if there’s a
mistake in a line. It won’t even let you enter a line or digit out
of sequence.

Using MLX

Type in and save some copies of MLX (you’ll want to use it to
enter future ML programs from other COMPUTE! publica-
tions). When you're ready to enter “LADS Object Code,” Pro-
gram F-3, load and run MLX. It asks you for a starting address
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and an ending address. These addresses are

Starting Address: 2710
Ending Address: 3D27 :

If you're unfamiliar with machine language, the addresses
(and all other values you enter in MLX) may appear strange.
Instead of the usual decimal numbers you're accustomed to,
these numbers are in hexadecimal—a base 16 numbering sys-
tem commonly used by ML programmers. Hexadecimal—hex
for short—includes the numbers 0-9 and the letters A-F. But
don’t worry—even if you know nothing about ML or hex, you
should have no trouble using MLX.

After you enter the starting and ending addresses, MLX
will offer you the option of clearing the workspace. Choose
this option if you're starting to enter LADS for the first time. If
you're continuing to enter LADS that you partially typed from
a previous session, don’t choose this option.

It's not necessary to know more about this option to use
MLX, but here’s an explanation if you're interested: When you
first run MLX, the workspace area contains random values.
Clearing the workspace fills it with zeros. This makes it easier
to find where you left off if you enter the listing in multiple
sittings. However, clearing the workspace is useful only before
you first begin entering a listing; there’s no need to clear it
before you reload to continue entering a partially typed listing.

When you save your work with MLX, it stores the entire
contents of the data buffer. If you clear the workspace before
starting, the incomplete portion of the listing is filled with ze-
ros when saved and thus refilled with zeros when reloaded. If
you don’t clear the workspace when first starting, the in-
complete portion of the listing is filled with random data.
Whether or not you clear the workspace before you reload,
this random data will refill the unfinished part of the listing
when you load your previous work. The rule, then, is to use
the clear workspace feature before you begin entering data
from a listing and not to bother with it afterward.

At this point, MLX presents a menu of commands:

Enter data

Display data

Load data

~ Save file
Catalog disk

Quit
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Entering a Listing

To begin entering data, press E. You'll be asked for the address
at which you wish to begin entering data. (If you pressed E by
mistake, you can return to the command menu by pressing
RETURN.) When you begin typing LADS, you should enter
the starting address here. If you're typing LADS in multiple
sittings, you should enter the address where you left off typing
at the end of the previous session. In any case, make sure the
address you enter corresponds to the address of a line of the
LADS MLX listing. Otherwise, you'll be unable to enter the
data correctly.

After you enter the address, you'll see that address appear
as a prompt with a nonblinking cursor. Now you're ready to
enter data. Type in all nine numbers on that line, beginning
with the first two-digit number after the colon (:). Each line
represents eight data bytes and a checksum. Although an
MLX-format listing appears similar to the “hex dump’ ma-
chine language listings you may be accustomed to, the extra
checksum number on the end allows MLX to check your typ-
ing. (You can enter the data from an MLX listing using the
built-in monitor if the rightmost column of data is omitted, but
we recommend against it. It’s much easier to let MLX do the
proofreading and error checking for you.)

Only the numbers 0-9 and the letters A-F can be typed
in. If you press any other key (with some exceptions noted
below), you'll hear a warning buzz. To simplify typing, MLX
redefines the function keys and the + and — keys on the nu-
meric keypad so that you can enter data one-handed. Figure F-
2 shows the keypad configuration supported by MLX.

MLX checks for transposed characters. If you're supposed
to type in A0 and instead enter 0A, MLX will catch your mis-
take. To correct typing mistakes before finishing a line, use the
INST/DEL key to delete the character to the left of the cursor.
(The cursor-left key also deletes.) If you mess up a line really
badly, press CLR/HOME to start the line over.

The RETURN key is also active, but only before any data
is typed on a line. Pressing RETURN at this point retuins you
to the command menu. After you type a character of data,
MLX disables RETURN until the cursor returns to the start of
a line. Remember, you can press CLR/HOME to get to a line
number prompt quickly.
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Figure F-2. Keypad for 128 MLX

Al B]|C | D

om—Zm

Beep Or Buzz

When you enter a line, MLX recalculates the checksum from
the eight bytes and the address and compares this value to the
number from the ninth column. If the values match, you'll
hear a pleasant beep to indicate that the line was entered cor-
rectly. The data is then added to the workspace area, and the
prompt for the next line of data appears. But if MLX detects a
typing error, you'll hear a low buzz and see an error message.
MLX will then redisplay the line for editing.

To make corrections in a line that MLX has redisplayed
for editing, compare the line on the screen with the one
printed in the listing, then move the cursor to the mistake and
type the correct key. The cursor-left and -right keys provide
the normal cursor controls. (The INST/DEL key now works as
an alternative cursor-left key.) You cannot move left beyond
the first character in the line. If you try to move beyond the
rightmost character, you'll reenter the line. During editing, RE-
TURN is active; pressing it tells MLX to recheck the line. You
can press the CLR/HOME key to clear the entire line if you
want to start from scratch, or if you want to get to a line num-
ber prompt to use RETURN to get back to the menu.
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Appendix F

After you have entered the last number on the last line of
the listing, MLX automatically moves to the Save option.

Other MLX Functions

The second menu choice, DISPLAY DATA, examines memory
and shows the contents in the same format as the program
listing (including the checksum). When you press D, MLX asks
you for a starting address. Be sure that the starting address
you give corresponds to a line number in the listing. Other-
wise, the display will be meaningless. MLX displays program
lines until it reaches the end of the program, at which point
the menu is redisplayed. You can pause the scrolling display
by pressing the space bar. (MLX finishes printing the current
line before halting.) To resume scrolling, press the space bar
again. To break out of the display and return to the menu
before the ending address is reached, press RETURN.

Two more menu selections let you save programs and
load them back into the computer. These are SAVE FILE and
LOAD FILE; their operation is quite straightforward. When you
press S or L, MLX asks you for the filename. (Again, pressing
RETURN at this prompt without entering anything returns you
to the command menu.) Next, MLX asks you to press either D
or T to select disk or tape.

You'll notice the disk drive starting and stopping several
times during a save. Don’t panic; this is normal behavior. MLX
opens and writes to the file instead of using the usual SAVE
command. (Loads, on the other hand, operate at normal
speed—thanks to the relocating feature of BASIC 7.0’s BLOAD
command.) Remember that MLX saves the entire workspace
area from the starting address to the ending address, so the
save or load may take longer than you might expect if you've
entered only a small amount of data from a long listing. When
saving a partially completed listing, make sure to note the ad-
dress where you stopped typing so that you'll know where to
resume entry when you reload.

Error Alert

MLX reports any errors detected during the save or load and
displays the standard error messages. (Tape users should bear
in mind that the Commodore 128 is never able to detect errors
when saving to tape.) MLX also has three special load error
messages:
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* INCORRECT STARTING ADDRESS, which means the file
you're trying to load does not have the starting address you
specified when you ran MLX. In this case, no data will be
loaded.

* LOAD ENDED AT address, which means the file you're try-
ing to load ends before the ending address you specified
when you started MLX. The data from the file is loaded, but
it ends at the address specified in the error message.

* TRUNCATED AT ENDING ADDRESS, which means the file
you're trying to load extends beyond the ending address you
specified when you started MLX. The data from the file is
loaded, but only up to the specified ending address.

If you see one of these messages and feel certain that
you've loaded the right file, exit and rerun MLX, being careful
to enter the correct starting and ending addresses.

If you wish to check which programs are on a disk, select
the C option from the command menu for a directory. You can
use the 128’s NO SCROLL key to pause the display. After-
wards, press any key to return to the menu.

The Quit menu option has the obvious effect—it stops
MLX and enters BASIC. The RUN/STOP key is trapped, so
the Q option lets you exit the program without turning off the
computer. (Of course, RUN/STOP-RESTORE also gets you
out.) You'll be asked for verification; press Y to exit to BASIC
or any other key to return to the menu. After quitting, you can
type RUN again and reenter MLX without losing your data as
long as you don’t use the clear workspace option.

The Finished Product

When you've finished typing all the data for an ML program
and saved your work, you're ready to see the results. The
instructions for loading and using the finished product vary
from program to program. LADS should be loaded using the
command BLOAD“LADS” or LOAD”LADS"”,8,1 for disk (if
you have a 1571 disk drive, BOOT “LADS"” also works) or
LOAD“LADS”,1,1 for tape (assuming you used the filename
LADS to save the object code through MLX). When you wish
to assemble source code once LADS is in memory, just SYS
10000 (it’s best to reload LADS after you have loaded the
source code).

358

[

N S SN




-

]

-

)

1

I I D B

]

Appendix F

An Ounce of Prevention

By the time you finish typing in the data for a long ML pro-
gram such as LADS, you’ll have many hours invested in the
project. Don’t take chances—use our Automatic Proofreader to
type MLX, and then test your copy thoroughly before first
using it to enter any significant amount of data. Make sure all
the menu options work as they should. Enter fragments of the
program starting at several different addresses, then use the
Display option to verify that the data has been entered cor-
rectly. And be sure to test the Save and Load options several
times to insure that you can recall your work from disk or
tape. Don't let a simple typing error in MLX cost you several
nights of hard work.

The Loader
This is a suggestion for a LADS “Loader” program (Program
F-4) which will boot LADS if you install it on a disk and use
the “Autoboot Maker” on the Test/Demo Disk that comes
with the 1571 disk drive. It also redefines the F1, F2, F3, and
F5 keys in useful ways. F1 will run either version of LADS.
You can invoke it anywhere onscreen because it will cursor
down and clear the screen before SYS 10000. F3 will boot
RAMLADS in case you want a fresh start because LADS in
RAM became corrupted. F2 invokes AUTO 10, and F5 per-
forms a SYS 2816 ($B00, the start address of many of the ex-
ample programs in this book). Each of these functions clears
the screen in such a way that you can hit the function key
anywhere on the screen; you need not be on a blank line.
The Loader also creates a small bit of source code contain-
ing a common template for experimenting with a short
routine.

Program F-1. The Automatic Proofreader

19 VEC=PEEK(772)+256*PEEK(773) :L0=43:HI=44

2@ PRINT "AUTOMATIC PROOFREADER FOR ";:IF VEC=4236
4 THEN PRINT "C-64"

38 IF VEC=50556 THEN PRINT "VIC-20@"

40 IF VEC=35158 THEN GRAPHIC CLR:PRINT "PLUS/4 & 1
6"

50 IF VEC=17165 THEN LO=45:HI=46 :GRAPHIC CLR:PRINT
nlzeu

60 SA=(PEEK(LO)+256*PEEK(HI))+6:ADR=SA
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79 FOR J=@ TO 166 :READ BYT:POKE ADR,BYT:ADR=ADR+1:

CHK=CHK+BYT : NEXT

80 IF CHK<>2@057@ THEN PRINT "*ERROR* CHECK TYPING

{ SPACE}IN DATA STATEMENTS":END

9@ FOR J=1 TO 5:READ RF,LF,HF:RS=SA+RF:HB=INT(RS/2

100
110

120
130

140
150

160
178
180
190
200
219
220
230
249
250
260
270
280
290
300
310

56) :LB=RS~(256*HB)
CHK=CHK+RF+LF+HF :POKE SA+LF,LB:POKE SA+HF,HB:N
EXT
IF CHK<>22@054 THEN PRINT "*ERROR* RELOAD PROGR
AM AND CHECK FINAL LINE":END
POKE SA+149,PEEK(772):POKE SA+150,PEEK(773)
IF VEC=17165 THEN POKE SA+14,22:POKE SA+18,23:
POKESA+29,224 :POKESA+139,224
PRINT CHR$(147);CHR$(17);"PROOFREADER ACTIVE":
SYS SA
POKE HI,PEEK(HI)+1:POKE (PEEK(LO)+256*PEEK(HI)
DATA 1204,169,73,141,4,3,169,3,141,5,3
DATA 88,96,165,20,133,167,165,21,133,168,169
DATA 0,141,0,255,162,31,181,199,157,227,3
DATA 202,16,248,169,19,32,2106,255,169,18,32
DATA 219,255,160,8,132,180,132,176,136,230,180
DATA 200,185,0,2,240,46,201,34,208,8,72
DATA 165,176,73,255,133,176,104,72,201,32,208
DATA 7,165,176,208,3,104,208,226,104,166,180
DATA 24,165,167,121,0,2,133,167,165,168,185
DATA ©,133,168,202,208,239,240,202,165,167,69
DATA 168,72,41,15,168,185,211,3,32,210,255
DATA 104,74,74,74,74,168,185,211,3,32,210
DATA 255,162,31,189,227,3,149,199,202,16,248
DATA 169,146,32,219,255,76,86,137,65,66,67
DATA 68,69,79,71,72,74,75,77,806,81,82,83,88
DATA 13,2,7,167,31,32,151,116,117,151,128,129,
167,136,137

Program F-2. MLX

AE 100 TRAP 960 :POKE 4627,128:DIM NL$,A(7)
XP 110 22=2:24=254:25=255:2%26=256:%27=127 :BS=256*PEE

K(4627) :EA=65280

FB 120 BE$=CHR$(7):RT$=CHR$(13):DL$=CHR$(2@):SP$=C

HR$(32) :LF$=CHR$(157)

KE 130 DEF FNHB(A)=INT(A/256):DEF FNLB(A)=A-FNHB(A

)*256 :DEF FNAD(A)=PEEK(A)+256*PEEK(A+1)

JB 140 KEY 1,"A":KEY 3,"B":KEY 5,"C":KEY 7,"D":VOL

15:IF RGR(@)=5 THEN FAST

FJ 150 PRINT"{CLR}"CHR$(142);CHR$(8):COLOR ©,15:CO

360
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GQ

FE
DK
FH
MF

QH

DC

HB

AP
SX
BG

PP

PM

SQ

DD

QD

JA
BR

QA
PS
RC

AC

160

170
180
190
200

210

220

230

240
250
260
270

280
299

300
310
320

330
340

350
360

370
380
399

400

PRINT TAB(12)"{RED}{RvS}{2 SPACES}k9 @}

{2 SPACES}"RT$;TAB(12)"{RVS}{2 SPACES}{OFF}
{BLU} 128 MLX {RED}{RvVS}{2 SPACES}"RTS$;TAB(
12)"{RVS}{13 SPACES}{BLU}"

PRINT"{2 DOWN}{3 SPACES}COMPUTE!'S MACHINE
{ SPACE } LANGUAGE EDITOR{2 DOWN}"
PRINT" { BLK}STARTING ADDRESSK43";:GOSUB 26@:
IF AD THEN SA=AD:ELSE 180

PRINT"{BLK} {2 SPACES}ENDING ADDRESSEK43";:GO
SUB 26@:IF AD THEN EA=AD:ELSE 190
PRINT" {DOWN} { BLK }CLEAR WORKSPACE [Y/N]?E43"
:GETKEY A$:IF A$<>"Y" THEN 220

PRINT" {DOWN } { BLU}WORKING..."; :BANK @:FOR A=
BS TO BS+(EA-SA)+7:POKE A,@:NEXT A:PRINT"DO
NE"

PRINT TAB(19)"{DOWN]}{BLK}{RVS} MLX COMMAND
{SPACE }MENU K43 {DOWN}":PRINT TAB(13)"{RVS}E
{OFF}NTER DATA"RT$;TAB(13)"{RVS}D{OFF}ISPLA
Y DATA"RTS;TAB(13)"{RVS}L{OFF}OAD FILE"
PRINT TAB(13)"{RVS}S{OFF}AVE FILE"RTS$;TAB(1
3)"{RVS}C{OFF}ATALOG DISK"RTS$;TAB(13)"{RVS}
Q{OFF}UIT{DOWN}{BLK}"

GETKEY A$:A=INSTR("EDLSCQ",A$):ON A GOTO 34
9,550,648,650,930,940:GOSUB 950:GOTO 249
PRINT"STARTING AT"; :GOSUB 26@:IF(AD<>@)OR(A
$=NL$ ) THEN RETURN:ELSE 250

A$=NL$ :INPUT AS$:IF LEN(A$)=4 THEN AD=DEC(AS$
)

IF AD=@¢ THEN BEGIN:IF A$<>NL$ THEN 300 :ELSE
RETURN : BEND

IF AD<SA OR AD>EA THEN 300

IF AD>511 AND AD<65280 THEN PRINT BES; :RETU
RN

GOSUB 95@:PRINT"{RVS} INVALID ADDRESS

{DOWN } {BLK } " : AD=0 : RETURN

CK=FNHB (AD) :CK=AD~-Z4*CK+25* (CK>Z7) :GOTO 330
CK=CK*Z2+Z5* (CK>Z7)+A

CK=CK+Z5* (CK>Z5) : RETURN

PRINT BES$;"{RVS} ENTER DATA ":GOSUB 25@:IF
{SPACE}A$=NLS$ THEN 220

BANK @:PRINT:F=0 :0PEN 3,3

GOSUB 310 :PRINT HEX$(AD)+":";:IF F THEN PRI

NT L$:PRINT"{UP}{5 RIGHT}";

FOR I=0 TO 24 STEP 3:B$=SP$:FOR J=1 TO 2:IF
F THEN B$=MIDS$(LS$,I+J,1)
PRINT"{RVS}"B$+LF$; :IF I<24 THEN PRINT"
{OFF}";

GETKEY A$2IF (A$>u/u AND A$<"3") 0R(A$>”@"
{SPACE }AND A$<"G") THEN 470

IF A$="+" THEN A$="E":GOTO 478
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QB 41¢ IF A$="-" THEN AS$="F":GOTO 479
FB 420 IF A$=RT$ AND ((I=@) AND (J=1) OR F) THEN P
RINT B$; :J=2:NEXT:I=24:GOTO 480
RD 43¢ IF A$="{HOME}" THEN PRINT B$:J=2:NEXT:I=24:
NEXT:F=0:GOTO 368
XB 449 IF (A$="{RIGHT}") AND F THEN PRINT BS$+LF$;:
GOTO 470
JP 450 IF AS$<>LF$ AND A$<>DL$ OR ((I=@) AND (J=1))
THEN GOSUB 950 :GOTO 390
PS 460 A$=LF$+SPS$S+LF$:PRINT BS$S+LF$;:J=2-J:IF J THE
N PRINT LF$;:I=I-3
GB 47@ PRINT AS$; :NEXT J:PRINT SPS$;
HA 48@ NEXT I:PRINT:PRINT"{UP}{5 RIGHT}";:LS$="
{27 SPACES}"
DP 499 FOR I=1 TO 25 STEP 3:GET#3,AS$,B$:IF A$=SP$
{SPACE }THEN I=25:NEXT:CLOSE 3:GOTO 220
BA 500 A$=AS$+B$:A=DEC(AS$):MIDS$S(LS,I,2)=AS$:IF I<25
{SPACE }THEN GOSUB 328:A(I/3)=A:GET#3,A$
AR 510 NEXT I:IF A<>CK THEN GOSUB 95@:PRINT:PRINT"
{RVS}] ERROR: REENTER LINE ":F=1:GOTO 360
DX 520 PRINT BES$ :B=BS+AD-SA:FOR I=@ TO 7:POKE B+I,
A(I):NEXT I
XB 530 F=@ :AD=AD+8:IF AD<=EA THEN 360
CA 540 CLOSE 3:PRINT"{DOWN}{BLU}** END OF ENTRY **
{BLK} {2 DOWN}":GOTO 650
MC 550 PRINT BES$;"{CLR}{DOWN}{RVS} DISPLAY DATA ":
GOSUB 25@:IF A$=NL$ THEN 220
JF 560 BANK @:PRINT" {DOWN}{BLU}PRESS: {RVS}SPACE
{OFF} TO PAUSE, {RVS}RETURN{OFF} TO BREAK
kK43 {DOWN}"
XA 570 PRINT HEX$(AD)+":"; :GOSUB 310 :B=BS+AD-SA
DJ 580 FOR I=B TO B+7:A=PEEK(I):PRINT RIGHTS$ (HEXS (
A),2);SP$; :GOSUB 320:NEXT I
XB 590 PRINT"{RVS}";RIGHTS (HEXS$(CK),2)
GR 600 F=1:AD=AD+8:IF AD>EA THEN PRINT"{BLU}** END
OF DATA **":GOTO 220
EB 610 GET AS$:IF A$=RT$ THEN PRINT BE$:GOTO 220
QK 620 IF A$=SP$ THEN F=F+1:PRINT BES;
XS 630 ON F GOTO 570,619,570
RF 640 PRINT BES$" {DOWN}{RVS} LOAD DATA ":0P=1:GOTO
660
BP 650 PRINT BE$"{DOWN}{RVS} SAVE FILE ":0P=0
DM 668 F=0:F$=NL$:INPUT"FILENAMEER43";F$:IF F$=NL$
{SPACE}THEN 220
RF 6702 PRINT"{DOWN}{BLK}{RVS}T{OFF}APE OR {RVS}D
{OFF}ISK: Ek43"“;
SQ 680 GETKEY A$:IF A$="T" THEN 850:ELSE IF A$<>"D
" THEN 680
SP 699 PRINT"DISK{DOWN}":IF OP THEN 769
EH 708 DOPEN#1l, (F$+",P"),W:IF DS THEN A$=D$:GOTO 7
49
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JH

MC

GC

GA
FD
PX

KB

RQ
ER

QJ

DP
EB

FP
KS

FG

Cp

GQ

SH

XB

710

720

730

740

750
760
770

780

790
800
810

820
830

840
850
8649

870

880

890

900

919

929

BANK @ :POKE BS-2,FNLB(SA):POKE BS-1,FNHB (SA
) :PRINT"SAVING ";F$:PRINT

FOR A=BS-2 TO BS+EA-SA:PRINT#1,CHRS(PEEK(A)
);:IF ST THEN A$="DISK WRITE ERROR":GOTO 75
2

NEXT A:CLOSE 1:PRINT"{BLU}** SAVE COMPLETED
WITHOUT ERRORS **":GOTO 220

IF DS=63 THEN BEGIN:CLOSE 1:INPUT"{BLK}REPL
ACE EXISTING FILE [Y/N]K43";A$:IF A$S="Y" TH
EN SCRATCH(F$) :PRINT:GOTO 70@:ELSE PRINT"
{BLK}":GOTO 660 :BEND

CLOSE 1:GOSUB 95@:PRINT"{BLK}{RVS} ERROR DU
RING SAVE: E43":PRINT A$:GOTO 220

DOPEN#1, (F$+",P") :IF DS THEN A$=DS$:F=4:CLO
SE 1:GOTO 798

GET#1,A$,B$:CLOSE 1:AD=ASC(A$)+256*ASC(BS$):
IF AD<>SA THEN F=1:GOTO 790

PRINT"LOADING " ;F$:PRINT:BLOAD(F$),B@,P(BS)
:AD=SA+FNAD (174 )-BS-1 :F==2* (AD<EA)-3*(AD>EA
)

IF F THEN 80@:ELSE PRINT"{BLU}** LOAD COMPL
ETED WITHOUT ERRORS **":GOTO 220

GOSUB 95@:PRINT"{BLK} {RVS} ERROR DURING LOA
D: K43":0ON F GOSUB 810,820,830,848:G0T0220
PRINT "INCORRECT STARTING ADDRESS (";HEXS$(AD
):" )" :RETURN

PRINT"LOAD ENDED AT ";HEXS$(AD) :RETURN
PRINT"TRUNCATED AT ENDING ADDRESS ("HEXS$(EA
)" )" :RETURN

PRINT"DISK ERROR ";AS$ :RETURN

PRINT "TAPE" :AD=POINTER(FS$) :BANK 1:A=PEEK(AD
) :AL=PEEK (AD+1) : AH=PEEK (AD+2)

BANK 15:SYS DEC("FF68"),d,1:SYS DEC("FFBA")
,1,1,8:SYS DEC("FFBD"),A,AL,AH:SYS DEC("FF9
@"),128:IF OP THEN 890

PRINT : A=SA:B=EA+1:GOSUB 92@:SYS DEC("E919")
+3:PRINT"SAVING ";F$

A=BS :B=BS+(EA-SA)+1:GOSUB 920:SYS DEC("EAlS8
"):PRINT"{DOWN} {BLU} ** TAPE SAVE COMPLETED
{SPACE}**":GOTO 220

SYS DEC("E99A"):PRINT:IF PEEK(2816)=5 THEN
{ SPACE }GOSUB 95@ :PRINT"{DOWN}{BLK}{RVS} FIL
E NOT FOUND ":GOTO 220

PRINT "LOADING ...{DOWN}":AD=FNAD(2817):IF A
D<>SA THEN F=1:GOTO 8@0:ELSE AD=FNAD(2819)-
1:F=-2*(AD<EA)-3* (AD>EA)

A=BS :B=BS+ (EA-SA)+1:GOSUB 92@:SYS DEC("E9FB
"):IF ST THEN 80@:ELSE 799
POKE193,FNLB(A) : POKE194,FNHB (A) :POKE 174,FN
LB(B) :POKE 175,FNHB(B) :RETURN
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Cp 930

MM 240

950
960
970
980

GRS

DQ 998

Program

CATALOG : PRINT" {DOWN } {BLU} ** PRESS ANY KEY F

OR MENU **":GETKEY A$:GOTO 220

PRINT BES$"{RVS} QUIT K43";RT$;"ARE YOU SURE
[Y/N]?":GETKEY AS$:IF A$<>"Y" THEN 220:ELSE
PRINT"{CLR}":BANK 15:END

SOUND 1,580,100 :RETURN

IF ER=14 AND EL=260 THEN RESUME 300

IF ER=14 AND EL=50¢ THEN RESUME NEXT

IF ER=4 AND EL=780 THEN F=4:A$=DS$:RESUME 8

29

IF ER=3¢ THEN RESUME:ELSE PRINT ERRS$(ER):;"
{SPACE }ERROR IN LINE";EL

F-3. LADS Object Code

This listing must be entered using the MLX program above.

Starting Address: 2710
Ending Address: 3D27

2710:29
2718:A0
2720:A9
2728:3C
2730 :F2
2738:EA
2748 :DF
2748:D0
2750 :E6
2758 :FF
2769:20
2768:20
2779:35
2778:85
2788:2F
2788:3C
279@:3C
2798:2A
27A0:2A
27A8:3C
27B0:03
27B8:06
27C@:51
27C8:AD
27D@:4C
27D8:C9
27E@:3C
27E8:18
27F@:C7
27F8:FF
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2809:D7 3B C9 20 D@ F3 C8 B9 E7
2808:85 3B C9 3D D@ @3 4C F7 1A
2810:29 A2 00 8E 98 3D 8A 99 6A
2818:D7 3B B9 85 3B F@ @8 9D FD
2820:85 3B E8 C8 4C 1A 28 9D 64
2828:85 3B 4C D@ 27 28 D5 2C 32
2830:20 77 2C 4C D@ 27 AD 9A D1
2838:3B C9 40 BO @96 AD 9B 3B @5
2840 :EE F3 3C 49 80 8D E@ 3C 59
2848:20 22 2D 4C CF 28 A0 00 FB
285@:8C E7 3C AD 88 3B C9 20 28
2858:F@ @3 4C 94 2B B9 89 3B 43
2860:C9 41 90 @3 EE E7 3C 99 51
2868:9A 3B C8 B9 89 3B FO 16 BA
2870:99 9A 3B C9 41 90 03 EE 79
2878:E7 3C C8 B9 89 3B FO 06 Al
2880:99 9A 3B 4C 7A 28 88 8C 82
2888:E6 3C AD E8 3C D@ 40 AD F2
2890:E7 3C D& A2 A9 9A 85 87 72
2898:A9 3B 85 88 AQ @0 AD 9A CO
28A0:3B C9 30 BJ 47 18 E6 87 FF
28A8:99 92 E6 88 Bl 87 FO 10 C4
28B@:C9 29 F@ @C C9 2C F@ 08 F7
28B8:C9 20 FO@ @4 C8 4C AC 28 4D
28C%:48 98 48 A9 0@ 91 87 22 74
28C8:FB 2F 68 A8 68 91 87 AD CO
28D@:9A 3B C9 23 F@ 3F C9 28 ES8
28D8:F@ 17 AD DA 3C C9 @8 FO D4
28E@:37 C9 03 DJ 71 A9 08 18 @7
28E8:6D D9 3C 8D D9 3C 4C C7 E6
28F@:29 AC E6 3C B9 9A 3B C9 1A
28F8:29 Fg 10 AD DA 3C C9 @1 53
2900:D9 @99 A9 10 18 6D D9 3C 99
2998:8D D9 3C AD DA 3C C9 @6 5B
2919:F@ 53 4C 8C 29 4C A7 29 F4
2918:AD F4 3C D@ @3 4C 8C 29 9E
292¢0:38 AD E2 3C E5 FA 48 AD 73
2928:E3 3C E5 FB B@ OE C9 FF 49
2930 :F@ 94 68 4C 5D 2C 68 19 4A
2938:0C 4C 48 29 FO 04 68 4C F3
2940 :5D 2C 68 18 @3 4C 5D 2C 8A
2948:38 E9 @2 8D E2 3C A9 0@ A5
295@9:8D E3 3C 4C 8C 29 AC E6 F7
2958:3C 88 B9 9A 3B C9 2C D@ F5
2960:04 C8 4C 3F 2B AD D9 3C 64
2968:C9 4C D@ 93 4C 95 29 AD B5
2970 :E3 3C D@ 59 AD DA 3C C9 8E
2978:09 F@ 52 C9 @6 BO @D C9 49
2980:02 Fg 09 A9 04 18 6D D9 41
2988:3C 8D D9 3C 20 B2 34 20 AF
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2999:D3
2998:B9
29A@:6C
29A8:9B
29B@:3B
29B8:01
29C@:3C
29C8:B2
29D@:C9
29D8:AD
29E@:3C
29E8:AD
29F@:3C
29F8:F4
2A00:06
2A08:08
2A10:2A
2A18:3C
2A20:FF
2A28:4C
2A30:88
2A38:20
22740 :D7
2248:40
2A50 :F6
2A58:3D
2760 :20
2A68:30
2A79:D9
2A78 :AD
2A80:905
2A88:20
2A799:3D
2A98:20
2AAG:02
2AA8:35
2AB@:27
2AB8:3C
2ACP:3C
2AC8:FF
2ADJ :88
2AD8:51
2AE@ :5A
2AE8:F0
2AF@:C9
2AF8:CC
2B@@:FC
2BA8:FF
2B19:8D
2B18:A9
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Appendix F

2B20:D9
2B28:37
2B39:EA
2B38:40
2B4@:9A
2B48:B9
2B5@:F1
2B58:DA
2B60 :FO
2B68:3C
2B70:18
2B78:29
2B8@:A9
2B88:AD
2B99:3C
2B98:A0
2BAG:85
2BA8:4C
2BB@:AD
2BB8:10
2BC@:4C
2BC8:03
2BD@:32
2BD8:14
2BEJ : B9
2BE8:D9
2BF@:2B
2BF8:02

2CPP:3C !

2CP8:01
2Cl9:05
2C18:4C
2C2@:3C
2C28:F5
2C30:20
2C38:68
2C40:98
2C48:F5
2C50:60
2C58:C0
2C60: 20
2C68:85
2C79:35
2C78:FF
2C80:20
2C88:38
2C99:A5
2C98:B9
2CAQ : B9
2CA8:FC
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2CBg:C9
2CB8:FC
2CCP:3C
2CC8:08
2CDh@:2C
2CD8:20
2CE@:85
2CE8:35
2CF@:8C
2CF8:C8
- 2D@P:18
2D@8:69
2D1@:EF
2D18:E3
2D20 :F7
2D28:F2
2D30:FF
2D38:89
2D49 : 00
2D48 :A5
2D5@:B1
2D58:C6
2D6J : A5
2D68:F9
2D79:983
2D78:A2
2D80: 20
2D88:53
2D9g : FO
2D98:F9
2DAg: 34
2DA8:AD
2DB@ : B9
2DB8:A9
2DCO : 20
2DC8 :AD
2DD@ : 08
2DD8: 29
2DE@:93
2DE8:43
- 2DF@:F3
- 2DF8:E2
2EQ@ : AD
2E@8:1E
2E1@:FF
2E18:6D
2E20:3C
2E28:F4
2E30:A5
2E38:69
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Appendix F

2E40:A9 3C 85 88 20 40 35 20 46
2E48:97 35 60 A9 00 8D 0@ FF 9A
2E50:A9 FC 8D 30 D@ 20 CC FF 16
2E58:AD EA 3C A2 D7 AQ 3B 20 CF .
2E60:BD FF A9 00 AA 20 68 FF 77
2E68:A9 @00 A2 @8 A8 20 BA FF A9
2E70:A9 00 AA AQ 80 20 D5 FF 31
2E78:B0 2F 20 CC FF A9 99 8D FD
2E80:00 FF A9 09 85 41 A9 89 17
2E88:85 42 A9 FC 8D 30 D@ A9 B5
2E99:91 20 D2 FF A9 44 20 1E D4
2E98:C0 A9 91 20 D2 FF A9 44 22
2EAG:20 1E C@ A9 40 20 1E CO C6
2EA8:60 20 B9 35 A9 FC 8D 30 54
2EB@:D@ 4C 03 40 A9 00 8D @9 55
2EB8:FF A9 FC 8D 3¢ D@ A9 91 Al
2EC@:20 D2 FF 20 D2 FF A9 44 12
2EC8:20 1E C@ AD EB 3C A2 EE 34
2EDO:AQ0 3B 20 BD FF A9 @1 A2 77
2ED8:00 20 68 FF A9 9@ A2 @8 E4
2EEQ:AQ 90 20 BA FF AD DB 3C E7
2EE8:85 87 AD DC 3C 85 88 A9 29
2EFQ:87 A6 FA A4 FB 20 D8 FF 76
2EF8:B@ AF 20 CC FF A9 90 8D 9E
2F00:80 FF 4C Bl 2A A9 00 20 1B
2F@8:BD FF A2 00 20 68 FF A2 DE
2F10:04 8A A@ FF 20 BA FF 20 33
2F18:C0 FF BO @4 20 CC FF 60 Cl
2F20:20 D2 FF A5 99 D@ 05 20 8F
2F28:E2 2F D@ F4 20 B9 35 A9 29
2F30:FC 8D 30 D@ 4C 03 40 AD 20
2F38:EA 3C A2 D7 A@ 3B 20 BD DC
2F40:FF A9 00 A2 00 20 68 FF 84
2F48:A2 08 AQ FF 20 BA FF A9 A3
2F50:00 20 D5 FF B@ 09 20 CC 28
2F58:FF A9 00 8D 00 FF 60 20 DA
2F60:B9 35 A9 FC 8D 30 D@ 4C 99
2F68:03 40 AQ 00 A2 FF E8 B9 @D
2F7@:5D 3A CD 85 3B F@ OA C8 98
2F78:C8 C8 Ef 39 DJ Fg 4C F2 F2
2F80:27 C8 B9 5D 3A CD 86 3B @3
2F88:F@ 06 C8 C8 DY E@ FJ EE 61
2F90:C8 B9 5D 3A CD 87 3B F@ @5
2F98:05 C8 D@ D2 Fg Eg AD 88 El
2FAG:3B C9 20 FO 94 C9 99 DF 3A
2FA8:D5 BD @5 3B 8D DA 3C BC C2
2FB@:3D 3B 8C D9 3C 4C D3 27 8D
2FB8:A9 00 85 41 A9 1C 85 42 BB
2FCP:20 E2 2F 20 E2 2F 20 E2 C6
2FC8:2F 20 E2 2F 20 E2 2F C9 CA

369



Appendix F

2FD@ :AC
2FD8:3C
2FE@:2A
2FE8:8C
2FFd:EA
2FF8:28
3000:94
3008:88
3010 :3C
3918:29
3020:A9
3928 :CA
3039:3B
3938:02
3040 : AE
3048 :00
3050 :3B
30958 :FF
3060:3B
3068:FF
3070 :2E
3978:6D
3080:3B
3088:20
3099 :8C
39098:3D
30A9:0C
30A8:E2
30B93: D9
30B8:91
30CQ:30
39C8:31
30D@ :C9
30D8:02
30EQ :F5
30E8:39
30F0:7F
30F8:3B
310@:20
3108:35
3119:31
3118:090
3120 :92
3128 :DE
3139:31
3138:31
3140:05
3148:B1
3150 :AA
3158:D4
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Appendix F

3169:16
3168:93
3170:4C
3178:8C
3180:31
3188:39
3199:30
3198:FF
31A0:35
31A8:20
31B2:FQ
31B8:87
31C@:A9
31C8:2F
31D@:3C
31D8:99
31EQ0:99
31E8:2F
31F9:60
31F8:33
3200 :00
3208 :AE
3210 :F0
3218:F0
3220 :F9
3228:3B
3239:99
3238:C1
3240 :E9
3248:AD
3250 :8D
3258:E2
32690 :2E
3268:3C
3279:C2
3278:29
3280:E8
3288:3C
3299 :AE
3298:20
32A9:3B
32A8:C8
32B@:FA
32B8:6A
32C0O:A0
32C8:20
32D@:2F
32D8:F5
32E0:C9
32E8:03
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32F@:4C
32F8:11
3300 :4C
3308:E4
3319:38
3318:99
3320:23
3328:32
3330:3B
3338:F6
3349:3C
3348:C9

3350:02

3358:8D
3360 :AD
3368:38
3379:99
3378:C9
3380 :9D
3388:FB
3399:29
3398:8C
33A0:3C
33A8:90
33BJ:FA
33B8:03
33C@:3A
33C8:3D
33D@:3C
33D8:4C
33EQ:00
33E8:34
33F@:8D
33F8:68
3400 :85
3408:8C
3419:84
3418:D0
3420 :84
3428:4C
3430:99
3438:E2
3449:CA
3448:D0
3450 :EF
3458:30
3460 :F5
3468:3C
34790 :85
3478:6F
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Appendix F

3480:34
3488:7A
3499:30
3498:C2
3470:85
34A8:8D
34B@:3C
34B8:38
34C0Q: 20
34C8:35
34D9:23
34D8:20
34E0:06
34E8:E2
34F9:D9
34F8:60
3500:3C
3508:23
3510:97
3518:E3
3528:4C
3528:3D
3530:70
3538:18
3540 :A0
3548:C7
3550:60
3558:35
3560 :F0
3568:35
3579:32
3578:60
3580:20
3588:20
3590 :20
3598:0D
35A9 :AE
35A8:8E
35B3:87
35B8:60
35C@ :FF
35C8:FF
35D@:FF
35D8 :AE
35EQ0:60
35E8:3C
35F@3:C9
35F8:20
3609 : BF
3608:F6
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3619 :AE
3618 :CC
3620:97
3628:A6
3630 :F6
3638:20
3640 :F4
3648 :AE
3650:690
3658:FF
3660:290
3668:4C
3670:32
3678:60
3680:04
3688:D0
3690 :FF
3698:3C
36A0:CC
36A8:0F
36B0:4A
36B8:D2
36CO:F5
36C8:3C
36Dg:08
36D8:27
36Eg:4C
36E8:C4
36F0:39
36F8:C9
3708 :53
3798 :D0
3710:20
3718:35
3720 :A5
3728:49
3730:20
3738:30
37490 : 00
3748:08
3750:37
3758:3B
3769:56
3768:20
37790 :2E
3778:3C
3780 :A9
3788:45
379@ :FF
3798:20
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Appendix F

37A0:37
37A8:3C
37B0:02
37B8:3C
37C0:20
37C8:1E
37D8:C9
37D8:99
37E@:C9
37E8:8C
37F@:AC
37F8:3B
3803 :8C
3808:A9
3818:99
3818:3B
3820:7F
3828:34
3830 :F7
3838:AC
3840 :85
3848:38
38580 :D8
3858:00
3869 : B9
3868:0A
3870:8D
3878:8D
3888:3D
3888:C8
3899 :8D
3898:F0
38AQ : 2F
38A8:B9
38BO :0A
38B8:3D
38C@:C8
38C8:8D
38D@ :2F
38D8:35
38EQ : B9
38E8:0A
38Fg:3D
38F8:9D
3903 : A9
3908:1E
3919:27
3918 :FF
3920 :2E
3928 :0E
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393@:CC
3938:E2
3944 :4C
3948:A2
3950 :A9
3958:AD
3969 :C9
3968:C9
3970 :A9
3978:D2
3983 :97
3988:A2
399@:D2
3998:CC
39A8:37
39A8:4E
39Bd : FF
39B8:3D
39C@ :FF
39C8:29
39D2 :8D
39D8:20
39E@:A9
39E8:A9
39F0 : A6
39F8:5A
3700 :87
3A08:20
3A10:AD
3A18:D2
3A20:97
3A28:37
3A30:48
3A38:01
3A40:01
3A48:B1
3A50:A9
3A58:34
3A60:4C
3A68:53
3A70:43
3A78:4C
3A80:41
3A88:4E
3A90:44
3A98:43
3AAQ:42
3AA8:43
3ABg:59
3AB8:48
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Appendix F

3AC@:42
3AC8:44
3AD@:49
3AD8:52
3AE@:52
3AE8:53
3AF@:52
3AF8:49
3B@J :4C
3B28:00
3Bl10:01
3B18:02
3B20 :00
3B28:91
3B3@:03
3B38:00
3B40:60
3B48:81
3B59:ES
3B58:A8
3B6@:21
3B68:42
3B79:78
3B78:33
3B8%:42
3B88:909
3B99 :00
3B98:00
3BAQ : 00
3BA8:09
3BBJ : 90
3BB8:00
3BCQ : 09
3BC8:00
3BDQ@ : 00
3BD8:00
3BEQ :00
3BE8:00
3BFJ :00
3BF8:09
3C00 :09
3C@8:41
3C10:45
3Cl18:2D
3C2@:2D
3C28:20
3C30:4F
3C38:41
3C40:45
3C48:41
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3C50:20 20 20 20 20 20 20 4E F6
3C58:41 4B 45 44 20 4C 41 42 28
3C60:45 4C 90 20 20 20 20 20 72
3C68:2@ 3C 3C 3C 3C 3C 3C 3C D2
3C70:3C 20 44 49 53 4B 20 45 79
3C78:52 52 4F 52 20 3E 3E 3E 72
3C80:3E 3E 3E 3E 3E 20 00 20 E5
3C88:20 20 20 20 20 2D 2D 20 4F
3C90:44 55 50 4C 49 43 41 54 7D
3C98:45 44 20 4C 41 42 45 4C 77
3CAQ:20 2D 2D 20 00 20 20 20 FC
3CA8:20 20 20 2D 2D 28 53 59 F9
3CB@:4E 54 41 58 20 45 52 52 20
3CB8:4F 52 20 2D 2D 20 00 20 4E
3CCA:20 2E 46 49 4C 45 20 4F 39
3CC8:52 20 2E 45 4E 44 20 52 A2
3CDg:45 51 55 49 52 45 44 20 CF
3CD8:00 00 90 90 00 00 00 80 51
3CEQ:00 00 00 00 00 00 00 00 59
3CE8:00 00 00 00 00 00 00 09 61
3CF0:00 00 00 00 00 00 00 00 69
3CF8:00 00 90 00 00 00 00 00 71
3D00:00 00 00 00 00 00 00 09 TA
3D98:00 00 20 4B 2E A9 41 A2 78
3D19:00 20 74 FF A9 FA 8D B9 2F
3D18:82 A2 @1 20 77 FF 00 00 1A
3D20:20 45 52 52 4F 52 53 @0 D5

Program F-4. Loader
MH 1 REM 1571 DISK DRIVE USERS SUBSTITUTE 'BOOT' F

FK
GD

BQ
KA
FR

BJ
GP

PP

SG

378

10
20

30
40
45

50
60

70

OR 'BLOAD' IN LINES 30 AND 109

PRINT" {CLR}

KEY 1,""+CHRS$(17)+CHRS (27 )+CHRS$(74)+CHRS$(27)
+CHRS$ (64 )+"SYS 10008"+CHRS$(13)

KEY 3, ""+CHRS$ (17 )+CHRS$ (27 )+CHRS(74)+CHRS$(27)
+CHRS (64 )+"BLOAD"+CHRS (34 )+"LADS"+CHR$(13)
KEY 5, ""+CHRS$ (17 )+CHRS$ (27 )+CHRS (74 )+CHRS$ (27)
+CHRS$ (64 )+"SYS 2816"+CHRS$(13)

KEY 2,""+CHR$(17)+CHRS (27 )+CHRS$ (74)+CHR$(27)
+CHR$ (64 )+"AUTO 18"+CHRS$(13)

FOR I = 7169 TO 7224 :READA:POKEI,A:NEXT
DATA 13,28,10,04,172,178,32,36,66,48,48,0,20,
28,20,0,46,83,9,27,28,39,0,46,79,0,49

DATA 28,49,9,59,32,32,32,32,80,82,79,71,82,6
5,77,32,78,65,77,69,06,55,28,50,9,59,9,0,0

188 PRINT"{CLR}"; :BLOAD "LADS

I B
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Appendix G

Commodore ASCII Codes

Dec

O 0N N

10
11
12
13
14
15
17
18
19
20
24
27
28
29
30
31
32
33
34
35
36
37
38

Hex Uppercase/Graphics Set Lowercase/Uppercase Set

02 underline on!
05 white
07 bell tone?
08 disable SHIFT-Commodore?
09 tab?
enable SHIFT-Commodore?
0A linefeed?
0B disable SHIFT-Commodore?
0C enable SHIFT-Commodore?
0D RETURN
OE switch to lowercase
OF flash on?
11 cursor down
12 reverse on
13 home
14 delete
18 tab set/clear?
1B ESCape
1C red
1D cursor right
1E green
1F blue
20 space
21 ! !
29 “ P
23 # #
24 $ $
25 % %
26 & &

379
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Dec Hex Uppercase/Graphics Set Lowercase/Uppercase Set

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

380

27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F
40
41
42
43
44
45

.46

’

% = A~

O 00 I N O W WO N =R O =

A S

MHOA®W>E NV

4

+*VA

TN 0O NN U W N R O N >

A S
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Appendix G

Dec

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

Hex Uppercase/Graphics Set Lowercase/Uppercase Set

47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F
60
61
62
63
64
65
66

[[H]H]][[\ED‘]]T SEMT NKXS<COCHOWIOTWOZZORT T TO

'ﬂmonw>mr—>-—-m-—-u'~<xg<gﬁmu@—ﬁogg.—w_._..’.m
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Dec

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
129

130
133
134
135
136

382

Hex Uppercase/Graphics Set Lowercase/Uppercase Set

67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E
7F
81

82
85
86
87
88

AR oA TEDeUANADNAF=HE

orange!
dark purple?
underline off?
F1
F3
F5
F7

C

e
—

‘.._
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Appendix G

Dec

137
138
139
140
141
142
143
144
145
146
147
148
149

150
151

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

Hex Uppercase/Graphics Set Lowercase/Uppercase Set

89
8A
8B
8C
8D
8E
8F
90
91
92
93
94
95

96
97

98

99

9A
9B

9C
9D
9E
9F

A0
Al
A2
A3
A4
A5
A6

BOULIN™

F2
F4
F6
F8

SHIFT-RETURN
switch to uppercase

flash off?
black
cursor up
reverse off
clear screen
insert
brown*
dark yellow!
light red
dark gray*
dark cyan!
medium gray
light green
light blue
light gray
purple
cursor left
yellow
cyan
SHIFT-space

Broinm
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Dec

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

384

Hex Uppercase/Graphics Set Lowercase/Uppercase Set

A7
A8
A9
AA
AB
AC
AD
AE
AF
BO
Bl
B2
B3
B4
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF
Co
C1
C2
C3
C4
C5
Cé

DONI=wI@ESEN L0008 E DN BN

mEoo=>dAEEYRNDIN=MOSTIEY DS ssOSEIO

N N I

&

¢ G




)

]

]

]

o

9

-

]

1

|

1

]

Appendix G

Dec Hex Uppercase/Graphics Set Lowercase/Uppercase Set

199 C7
200 C8
201 C9
202 CA
203 CB
204 CC
205 CD
206 CE
207 CF
208 DO
209 D1
210 D2
211 D3
212 D4
213 D5
214 D6
215 D7
216 D8
217 D9
218 DA
219 DB
220 DC
221 DD
222 DE
223 DF
224 EO
225 El
226 E2
227 E3
228 E4
229 E5
230 Eé6

ErOO0™ dEEFEEoBoXA @ 0EdANADSET=E
BEOOD™ O BESFEN < x s <cH@ =090 ZE - A=~ E0
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Dec

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

Notes

1. 80-column display only
2. 128 mode only

3. 64 mode only

4, 40-column display only

386

Hex Uppercase/Graphics Set Lowercase/Uppercase Set

E7
E8
E9
EA
EB
EC
ED
EE
EF
FO
F1
F2
F3
F4
F5
Fé
F7
F8
F9
FA
FB
FC
FD
FE
FF

AMEENODA0=mOSEELN DY FaEONE O

EOEEMNANDAN=EO8T B D BN E O
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Appendix G

f—
Foi
rol True ASCII
ASCII
r’j Code Character
b 0 NUL
1 SOH
2 STX
m 3 ETX
‘ 4 EOT
5 ENQ
6 ACK
7 BEL
8 BS
9 HT
10 LF
11 VT
12 FF
13 CR
14 SO
15 SI
16 DLE
17 DC1
18 DC2
19 DC3
20 DC4
21 NAK
22 SYN
23 ETB
24 CAN
25 EM
26 SUB
27 ESC
28 FS
29 GS
30 RS
31 us
m 32 (space)
- 33 !
34 "
rj 35 #
i 36 $
37 %
38 &
;“{ 39 ’
- 40 (
41 )
, 42 .
M 8+

;

44
45
46
47
48
49
50
51
52

ASCII
Code Character

’

CCNOONNU R WN R ON

CHOIOIOZZT AT " IOTHINI PPV | AT

Code

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

ASCII

Character

i~ TN Xg<dg oo OoB TRTIFR TOANDD ]| = T NKXIE <

DEL
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1 ]

11 ]

1 ]

B B B

Index

A (Assemble) monitor instruction 31-32
absolute, X addressing 67-69
absolute, Y addressing 67-69
absolute addressing 58
accumulator 24, 25, 55-56, 80
accumulator mode addressing 72
ADC instruction 25, 80, 97, 146,
215-16
adding large numbers 81-84
addition 80-84
addressing 21-22
modes 53-72
address pointer 69
AND instruction 123, 124, 216-17
Apple computers 31
argument xi, 78
arithmetic 75-87
in ML 24-25
Arithmetic instruction group 97-98
ASC BASIC function, ML equivalent of
182-83
ASCII, true 387
ASCII code 13, 75, 76, 109
ASL instruction 72, 85, 97, 124, 217
assembler ix, 21. See also LADS
assembly, disk 142
assembly language ix. See also LADS
*= pseudo-op 252-53
“Automatic Proofreader, The” program
351-53, 359-60
bank 15, 21, 31, 39, 191, 192-95
Bank Number Code ROM routine 209
bank switching 191-92, 195-96
BASIC
borrowing from 129-35
commands, ML equivalents of
157-87
use for complicated arithmetic 75
versus ML xii-xiv
““BASIC Loader” program 23-24
BCC instruction 64, 85, 87, 98, 101, 218
BCS instruction 64, 85, 87, 98, 101, 218
BEQ instruction 55, 64, 85, 98-99, 101,
218-19
big loops 107-8
binary notation 11
“’Binary Quiz” program 1-2
“‘Binary Table”” program 20
bit 12, 16
BIT instruction 124, 219
BLOAD BASIC command 37

BMI instruction 64, 85, 87, 98, 101,
105, 219-20

BNE instruction 64, 85, 87, 96, 99-101,
105, 220

book, how to use 3-7

BPL instruction 64, 85, 87, 98, 101,
105, 220-21

branching 98-105

BRK instruction 33, 36, 37, 46, 63, 64,
87, 96, 120-22, 221

built-in routines. See ROM routines

BVC instruction 64, 91, 98, 101, 222

BVS instruction 64, 98, 101, 222

byte 13-14, 16, 17-19

.BYTE pseudo-op 253-54

carry flag 80-81, 87

cassette
buffer 140-41
tape 259

C (Compare Memory) monitor instruc-
tion 32

C flag 97

chained files, LADS and 259-62

character codes, Commodore 379-86

CHR$ BASIC function, ML equivalent
of 183

CLC instruction 61, 97, 146, 222-23

CLD instruction 61, 223

CLI instruction 125, 223

CLOSE ROM routine 203

CLR BASIC command, ML equivalent
of 157-58

CLV instruction 91, 224

CMP instruction 13, 85, 87, 99, 105,
194, 224-25

CMP long ROM routine 193, 211

comparison subroutine 344

compiled code 131

CONT BASIC command, ML equiva-
lent of 158-59

CPX instruction 99, 225-26

CPY instruction 99, 226-27

cursor control ROM routine 207-8

customize function keys ROM routine
208-9

database, searching 85

DATA BASIC command, ML equivalent
of 159-60

data tables 252

D (Disassemble) monitor instruction
32-35
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Debugger instruction group 120-22

debugging xiv, 42-46, 120-22
monitor and 31, 34, 46

DEC instruction 69, 106, 227

Decision Maker instruction group
98-105

DEX instruction 63, 106, 227-28

DEY instruction 63, 69, 106, 228

DIM BASIC command, ML equivalent
of 160-61

disassembly xi-xii, 24-25, 32-35

division 84-85

division subroutine 348

double-byte addition subroutine 345

double-byte subtraction subroutine
345-46

“Double-Compare” program 86-87

double comparison 85-87

.D pseudo-op 261

80-column mode 4

8502 chip 13, 125-26

8502 instruction set 215-46

“Embedded PRINT” program 205

END BASIC command, ML equivalent
of 161-62

endless loop 45

.END pseudo-op 260

environment, 128 191-97

EOR instruction 123-24, 228-29

ESCape key, ML and 191-92

F (fill) monitor instruction 35

fields, disassembly 34-35

.FILE pseudo-op 260

files 205-6
disk 202
tape 202

“Filling the Screen with the Letter A”
program 68-69

FOR-NEXT LOOP, ML equivalent of
64, 162-65

40-column mode 4

forward branching 103-5

GET BASIC command, ML equivalent
of 165

GET BASIC routine, using in ML
132-35

GET ROM routine 207

G (Go) monitor instruction 36

GO 64 ROM routine 208

GOSUB BASIC command, ML equiva-
lent of 165-66

GOTO BASIC command, ML equiva-
lent of 166-68

hexadecimal notation
advantages of 11-12
how to use 15-16

390

hex dump 24, 38
“Hex Practice” program 21-22
H (Hunt) monitor instruction 36-37
IF-THEN BASIC command, ML equiva-
lent of 168
immediate addressing 35, 43-44, 60-61
implied addressing 61-63
INC instruction 69, 106, 229
increment and decrement double-byte
numbers subroutine 343-44
indirect X addressing 71-72
indirect Y addressing 69-71
INPUT BASIC command, ML equiva-
lent of 169-70
INPUT ROM routine 204
INPUT# ROM routine 203
instruction, ML x, 23
instructions, length of 53-55
instruction set, 8502 91-126, 215-46
interactive programming 46—47
interpreted code 131
INX instruction 63, 79, 96, 106, 229
INY instruction 63, 69, 106, 230
J (Jump) monitor instruction 37
JMP instruction 23, 101, 113, 114,
119-20, 194, 230
JMP long ROM routine 193 210
JSR instruction 63, 101, 105, 113, 114,
129, 131, 231
JSR long ROM routine 193, 210
jump table 130-31
Kernal 130, 140, 201
Kernal routine. See ROM routine
keyboard matrix code 76
keypress, checking for 76, 196-97, 207
labels, LADS and 254-57
LADS assembler ix-x, 3-7, 25, 86
chained files and 259-62
commands 251-52
how to use 247-66
instructions 28
labels 254-57
loading 5
longer programs and 259-62
modifying 266
object code 364-78
pseudo-ops 249-52
rules for 262-65
source code 275-342
starting address and 248
typing in 349-59
use like BASIC 247
LDA instruction 25, 61, 63, 35, 78, 79,
80, 91, 93-97, 99, 101, 105, 191, 194,
231-32
LDA long ROM routine 193, 196, 210
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LDX instruction 72, 232

LDY instruction 233

LEFT$ BASIC function, ML equivalent
of 183

LEN BASIC function, ML equivalent of
183-84

LET BASIC command, ML equivalent
of 170-72

LIST BASIC command, ML equivalent
of 172-73

listing conventions, BASIC 349-50

L (Load) monitor instruction 37-38

LOAD BASIC command, ML equiva-
lent of 173

loader, BASIC xi

““Loader” program 378

LOAD ROM routine 205-6

long jumps 21-11

long ROM routine 193, 194, 196, 210,
211

Loop instruction group 106-12

LSR instruction 72, 85, 97, 124, 233-34

machine language
code, locating in memory 4
programs, reading 22
versus BASIC xii-xiv

‘“Machine Language Editor, MLX" pro-
gram 353-58, 360-64 '

math, LADS and 257-58

memory map 59

memory map, Commodore 128 267-74

MID$ BASIC function, ML equivalent
of 184

ML. See machine language

“MLX Machine Language Editor” pro-
gram 353-58, 360-64

M (Memory) monitor instruction 38,
193

mnemonic 23

monitor
bugs and 33
memory in 193-95
modifying code with 33-34
running program from 36
using 41-43

monitor mode 16

multibyte addition and subtraction sub-
routine 346-47

multiplication 84-85

multiplication subroutine 347-48

natural numbers 11-13

NEW BASIC command, ML equivalent
of 173-74

N flag 93, 95-96, 97

NOP instruction 34, 63, 122, 234

object code 22

octal notation 15

offset 67, 105

ON-GOSUB BASIC command, ML
equivalent of 174-75

ON-GOTO BASIC command, ML
equivalent of 175

opcode 23, 78

OPEN ROM routine 202-3

operation code. See opcode

.O pseudo-op 261

ORA instruction 123, 234-35

OUTPUT# ROM routine 203

page 43

parameter 117

PC (program counter) 33, 53, 79, 93

PHA instruction 63, 96, 235

PHP instruction 63, 96, 236

PLA instruction 63, 96, 114, 236

PLP instruction 63, 96, 236-37

portability 129

PRINT BASIC command, ML equiva-
lent of 176-79

PRINT BASIC routine, using in ML
132-35

PRINT ROM routine 204

processor status flags. See SR

program, building a 139-54

programming techniques 41, 46-49

pseudo-op 250-52

+ pseudo-op 257-58

#> pseudo-op 258-59

#< pseudo-op 258-59

RAM, reserving for ML 141-43

READ BASIC command, ML equivalent
of 179

register 38-39, 53, 55, 79, 94-95

relative addressing 63-66

REM BASIC command, ML equivalent
of 1119-80

restore default I/O ROM routine 203

RETURN BASIC command, ML equiva-
lent of 180

RIGHT$ BASIC function, ML equiva-
lent of 184-85

ROL instruction 72, 124, 237-38

ROM routine 129, 146, 194, 201-11

ROR instruction 72, 91, 124, 238-39

R (Registers) monitor command 38-39

RTI instruction 91, 125, 239

RTS instruction 24, 36, 63, 113, 114,
239

RUN BASIC command, ML equivalent
of 10-81

safe memory locations 60, 139-40

SAVE BASIC command, ML equivalent
of 181
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SAVE ROM routine 206

SBC instruction 87, 97, 240

screen 3

“Searcher” program 139-54
program discussion 143-49

SEC instruction 61, 84, 87, 97, 240

SED instruction 61, 81, 91, 240-41

SEI instruction 125, 241-42

set bank number ROM routine 202

set filename ROM routine 202

set 2,8,1 ROM routine 201-2

sign 95

68000 chip 142

6502 chip 125-26 .

6510 chip 125-26

snow 96-97

source code 22, 28

SP (Stack Pointer) 53

speed switch 197

SR 54, 55, 56

S (Save) monitor instruction 39

stack 43, 60, 96-97, 113-17

stack pointer 39

STA instruction 25, 69, 78, 91, 93, 95,
96, 242

STA long ROM routine 196, 211

starting address 6, 248

STOP BASIC command, ML equivalent
of 181

strings 108-13

STX instruction 72, 93, 95, 96, 243

STY instruction 93, 243

subprogram 252

subroutine 41-42, 113-19

392

subroutine and jump instruction group
113-20

subroutine library 343-48

subtraction 84

SYS BASIC command 24

SYS BASIC command, ML equivalent
of 182

TAB BASIC function, ML equivalent of
185-86

tables, searching 82-83

“Tables”” subprogram 252

TAX instruction 95, 243

TAY instruction 95, 244

test RUN/STOP key ROM routine 206

Transporter instruction group 93-97

TSX instruction 96, 244

T (Transfer) monitor instruction 39-40

TXA instruction 61, 63, 80, 95, 244

TXS instruction 96, 245

TYA instruction 53, 61, 95, 246

unknown forward branches 66-67

V (Verify) monitor instruction 40

V flag 97

X (exit to BASIC) monitor instruction
40

X register 55-56

Y register 55-56

Z80 chip 142

zero page 140

zero page, X addressing 67

zero page, Y addressing 72

zero page addressing 43-44, 58-60, 79

Z flag 93, 96, 97
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To order your copy of 128 LADS Disk, call our toll-free US
order line: 1-800-346-6767 (in NY 212-887-8525) or send your
prepaid order to:

128 LADS Disk
COMPUTE! Publications
P.O. Box 5038

F.D.R. Station

New York, NY 10150

All orders must be prepaid (check, charge, or money order). NC
residents add 4.5% sales tax.

Send ____ copies of 128 LADS Disk at $12.95 per copy.
(033BDSK)

Subtotal $

Shipping and Handling: $2.00/disk $
Sales tax (if applicable) $

Total payment enclosed $

o Payment enclosed
o Charge o Visa o0 MasterCard o American Express

Acct. No. Exp. Date o
Name

Address

City State Zip

Please allow 4-5 weeks for delivery.

46203323
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COMPUTE! Books

Ask your retailer for these COMPUTE! Books or order
directly from COMPUTE!.

Cadll toll free (in US) 800-346-6767 (in NY 212-887-
8525) or write COMPUTE! Books, P.O. Box 5038, F.D.R.
Station, New York, NY 10150.

Quantity

Charge 0OVisa OMasterCard 0O American Express

Title

SpeedScript: The Word Processor for the
Commodore 64 and VIC-20 (94-9)

Commodore SpeedScript Book Disk

128 Machine Language for Beginners (033-5)

COMPUTE!'s Commodore 64/128 Collection (97-3)
All About the Commodore 64, Volume Two (45-0)
All About the Commodore 64, Volume One (40-X)

Programming the Commodore 64:
The Definitive Guide (50-7)

COMPUTE!'s Data File Handler for the
Commodore 64 (86-8)

COMPUTE!’s Kids and the Commodore 128 (032)

Kids and the Commodore 64 (77-9)

COMPUTE!'s Commodore Collection, Volume 1 (55-8)
COMPUTEI's Commodore Collection, Volume 2 (70-1)
COMPUTE!'s Personal Accounting Manager for the

Commodore 64 (014-9)

COMPUTE!’s VIC-20 and Commodore 64
Tool Kit: BASIC (32-9)

COMPUTE!’s VIC-20 and Commodore 64
Tool Kit: Kernal (33-7)

COMPUTE!’s Telecomputing on the
Commodore 64 (009)

COMPUTE!'s VIC-20 Collection (007)
Programming the VIC (52-3)

VIC Games for Kids (35-3)

COMPUTE!’s First Book of VIC (07-8)
COMPUTE!’s Second Book of VIC (16-7)
COMPUTE!’s Third Book of VIC (43-4)
Mapping the VIC (24-8)

COMPUTE!'s VIC-20 Collection (007)

Price®

$ 9.95
$12.95
$16.95
$12.95
$16.95
$12.95

$24.95

$12.95
$14.95
$12.95
$12.95
$12.95

$12.95
$16.95
$16.95

$12.95
$12.95
$24.95
$12.95
$12.95
$12.95
$12.95
$14.95
$12.95

Total

*Add $2.00 per book for shipping and handling.
Outside US add $5.00 air mail or $2.00 surface mail.

NC residents add 4.5% sales tax

Shipping & handling: $2.00/book

Total payment

All orders must be prepaid (check, charge, or money order).
All payments must be in US funds.
O Payment enclosed.

Acct. No Exp. Date.
(Required)
Name.
Address.
City. State Zip.

*Allow 4-5 weeks for delivery.
Prices and availability subject to change.
Current catalog available upon request.
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If you've enjoyed the articles in this book, you'll find
the same style and quality in every monthly issue of
COMPUTE!’'s Gazette for Commodore.

For Fastest Service
Call Our Toll-Free US Order Line

1-800-247-5470
In lowa call 1-800-532-1272

COMPUTE!s Gazette

P.O. Box 10957
Des Moines, IA 50340

My computer is:

O Commodo_re 64 [0OVIC-20 0O Other

0 $24 One Year US Subscription
0O $45 Two Year US Subscription
0 $65 Three Year US Subscription

Subscription rates outside the US:

0 $30 Canada
O $65 Air Mail Delivery
O $30 International Surface Mail

Name
Address

City State Zip
Country

Payment must be in US funds drawn on a US bank, international
money order, or charge card. Your subscription will begin with the
next available issue. Please allow 4-6 weeks for delivery of first issue.
Subscription prices subject to change at any time.

O Payment Enclosed 0O Visa
O MasterCard 0O American Express

Acct. No. Expires /

(Required)

The COMPUTE!'s Gazette subscriber list is made available to carefully screened
organizations with a product or service which may be of interest to our readers. If you

prefer not to receive such mailings, please check this box 0.
46222033
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If you've enjoyed the articles in this book, you'll find the
same style and quality in every monthly issue of COM-
PUTE! Magazine. Use this form to order your subscription
to COMPUTE!.

For Fastest Service
Call Our Toll-Free US Order Line

1-800-247-5470
In 1A call 1-800-532-1272

COMPUTE!

P.O. Box 10954
Des Moines, IA 50340

My computer is:

0O Commodore 64 or 128 O TI-99/4A O 1BM PC or PCjr O VIC-20
O Apple O Atari O Amiga O Other
0O Don't yet have one...

0O $24 One Year US Subscription
0 $45 Two Year US Subscription
0 $65 Three Year US Subscription

Subscription rates outside the US:

0 $30 Canada and Foreign Surface Mail
0O $65 Foreign Air Delivery

Name

Address

City State Zip
Country

Payment must be in US funds drawn on a US bank, international
money order, or charge card.

O Payment Enclosed 0O Visa

0O MasterCard O American Express

Acct. No. ' Expires /

(Required)

Your subscription will begin with the next available issue. Pquse
allow 4-6 weeks for delivery of first issue. Subscription prices subject

to change at any time.
46219333









i about which the critics have said:

o By the author of the bestsellmg Mach/ne L‘ y

‘ “Understandable '—The New York Tlmes i

“If you know BASIC and want to /eam machme language,’ '

. thisis the place to start... Building on your experience as a BASIC

_programmer, Mansfield very gently takes you through the fin-

damentals of machine language.”—Whole Earth Software Catalog“ .

“The great majority of books about machine language assume
a considerable familiarity with both the details of microprocessor
chips and with programming technique. This book assumes only a
working knowledge of BASIC. It was designed to speak directly to
the amateur programmer, the part-time computerist. It should help
you make the transition from BASIC to machine language with rel-
ative ease.”’—From the Preface

Contains everything you need to learn 8502 machine language
including:

+ A dictionary of all major BASIC words and their machine language
equivalents. This section contains many sample programs and
ilustrations of how all the familiar BASIC programming techniques
are accomplished in machine language.

» The LADS assembiler. A full-featured, commercial-quality, label-
based programming language which supports 18 pseudo-ops, la-
bels, multiple statements on a line, named variables, and remarks.

Automatically switches between disk-based mode for large
linked files or ultra-fast memory-based assembly mode. Automatic
output to memory, screen, disk (1541 or 1571), or printer. (Cas-
sette users must save the results via the built-in monitor.) Uses
full 128 RAM, 2 MHz fast assembly, 40- or 80-column screen
modes.

» Easy-to-understand descriptions of how you can make the best
use of all the new features available on the 128,

» All 8502 commands fully explained and arranged for easy
reference.

» Special chapters on the 128 programming environment and the
expanded Kernal.

* Many clear, understandable examples and comparisons to already
familiar BASIC programming methods.

* A library of frequently used subroutines.

For 1541 or 1571 disk, cassette, 40- or 80-column mode.

ISBN 0-87455-033-5

Most of the programs in this book are available on a companion disk. See the coupon in the
back for details.

HUvoys O4 .
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